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1. Introduction. A linear topological space is said to have the Hahn-Banach
Extension Property (HBEP) if every continuous linear functional on a closed
subspace has a continuous linear extension to the whole space. Duren, Romberg,
and Shields [4, 7] give an example, due to A. Shuchat, of a non-locally convex
space with the HBEP; and ask if this can happen in a non-locally convex
F-space. Here we show that the answer is negative for F-spaces with a basis.
For this class of spaces, then, the HBEP and local convexity are equivalent.
The proof is in 3, with the necessary background material occupying 2.

2. Background material. An F-space is a complete linear metric space
over the real or complex field. If E is an F-space, there is a complete trans-
lation invariant metric d in E for which the functional lx[] d(x, 0) is an
F-norm, that is:

(a) [[x]! > 0 for all x in E, and [[x[[ 0 iff x 0,

(c) II-xll < IIxII whenever ial _< 1,
(d) lim [Ix/nil 0 for e ch x in E,
(e) the metric d(x, y) vii is complete.

Conversely, if E is a real or complex linear space, and I]" ][ is an F-norm on E,
then d(x, y) Ix Y[I defines a metric under which E becomes an F-space
(see Kelley-Namioka [5; 52]). We say two F-norms on E are equivalent if
they induce the sme topology on E.
The interior mapping principle and the principle of uniform boundedness

hold for F-spaces (see Dunford and Schwartz [3, Chapter II]).
From now on, E denotes an F-space whose topology is induced by n F-norm

I[" it, E’ is the (continuous) dual of E. A sequence {e} in E is called a basis
if *o each x , E there corresponds a unique sequence {(x)} of scMars such
that the series L0 (x)e converges in E to x. The coordinate functionMs

are cleurly linear, and are continuous (see Corollary to Proposition 1). A
sequence {e in E is called basic if it is a basis for the closed subspace it spans.
The following result is esseutiMly proved by Arsove [1 ].

PROPOSITION 1. Suppose {e} is a basis in E. Then
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