EXTENSION OF LINEAR FUNCTIONALS ON F-SPACES WITH BASES

By Joel H. Shapiro

1. Introduction. A linear topological space is said to have the Hahn-Banach Extension Property (HBEP) if every continuous linear functional on a closed subspace has a continuous linear extension to the whole space. Duren, Romberg, and Shields [4, §7] give an example, due to A. Shuchat, of a non-locally convex space with the HBEP; and ask if this can happen in a non-locally convex F-space. Here we show that the answer is negative for F-spaces with a basis. For this class of spaces, then, the HBEP and local convexity are equivalent. The proof is in §3, with the necessary background material occupying §2.
2. Background material. An F-space is a complete linear metric space over the real or complex field. If E is an F-space, there is a complete translation invariant metric d in E for which the functional $\|x\|=d(x, 0)$ is an F-norm, that is:
(a) $\|x\| \geq 0$ for all x in E, and $\|x\|=0$ iff $x=0$,
(b) $\|x+y\| \leq\|x\|+\|y\|$,
(c) $||\alpha x|| \leq\|x\|$ whenever $|\alpha| \leq 1$,
(d) $\lim _{n \rightarrow \infty}\|x / n\|=0$ for each x in E,
(e) the metric $d(x, y)=\|x-y\|$ is complete.

Conversely, if E is a real or complex linear space, and $\|\cdot\|$ is an F-norm on E, then $d(x, y)=\|x-y\|$ defines a metric under which E becomes an F-space (see Kelley-Namioka [5; 52]). We say two F-norms on E are equivalent if they induce the same topology on E.

The interior mapping principle and the principle of uniform boundedness hold for F-spaces (see Dunford and Schwartz [3, Chapter II]).

From now on, E denotes an F-space whose topology is induced by an F-norm $\|\cdot\| . E^{\prime}$ is the (continuous) dual of E. A sequence $\left\{e_{n}\right\}_{0}^{\infty}$ in E is called a basis if to each $x \varepsilon E$ there corresponds a unique sequence $\left\{\xi_{n}(x)\right\}_{0}^{\infty}$ of scalars such that the series $\sum_{n=0}^{\infty} \xi_{n}(x) e_{n}$ converges in E to x. The coordinate functionals ξ_{n} are clearly linear, and are continuous (see Corollary to Proposition 1). A sequence $\left\{e_{n}\right\}$ in E is called basic if it is a basis for the closed subspace it spans. The following result is essentially proved by Arsove [1].

Proposition 1. Suppose $\left\{e_{k}\right\}_{0}^{\infty}$ is a basis in E. Then

[^0]
[^0]: Received October 30, 1968. This work represents part of the author's dissertation at the University of Michigan. The author wishes to thank Professor Allen Shields for his guidance.

