ON UNIFORM DISTRIBUTION OF SEQUENCES IN GF[q, x] AND $GF\{q, x\}$.

BY H. G. MEIJER AND A. DIJKSMA

1. Introduction and preliminaries. Let $\Phi = GF[q, x]$ denote the ring of polynomials in the indeterminate x over an arbitrary finite field GF(q) of q elements. If A and M are any two elements of Φ with deg M > 0, let A(M) be the uniquely determined element of Φ such that deg $A(M) < \deg M$ and $A \equiv A(M) \pmod{M}$.

J. H. Hodges [2; 55] defined the uniform distribution of a sequence $\theta = (A_i)$ of elements of Φ as follows. Let M be any element of Φ with deg M = m > 0. For any $B \varepsilon \Phi$ and integer $n \ge 1$ define $\theta(n, B, M)$ as the number of terms among A_1, A_2, \dots, A_n such that $A_i(M) = B(M)$. Then the sequence θ is said to be uniformly distributed modulo M in Φ if

(1.1)
$$\lim_{n\to\infty} n^{-1}\theta(n, B, M) = q^{-m} \text{ for all } B \varepsilon \Phi$$

The sequence θ is said to be uniformly distributed in Φ if (1.1) holds for every $M \epsilon \Phi$ with deg M = m > 0.

Let $\Phi' = GF\{q, x\}$ denote the extension field of Φ consisting of all the expressions

$$\alpha = \sum_{i=-\infty}^{m} c_i x^i \qquad (c_i \in GF(q)).$$

If α has this representation and $c_m \neq 0$, then we define deg $\alpha = m$. We extend this definition by writing deg $0 = -\infty$. The integral and fractional parts of α , denoted by $[\alpha]$ and $((\alpha))$ respectively, are defined by

$$[\alpha] = \sum_{i=0}^{m} c_{i} x^{i}, \qquad ((\alpha)) = \sum_{i=-\infty}^{-1} c_{i} x^{i}.$$

It follows from the definition, that, for α and β in Φ' , we have $[\alpha + \beta] = [\alpha] + [\beta]$. We say $\alpha \equiv \beta \pmod{1}$ if $\alpha = \beta + A$, where $A \in \Phi$. It follows that $\alpha \in \Phi'$ is congruent modulo 1 to a unique β , namely $\beta = ((\alpha))$, such that deg $\beta < 0$.

L. Carlitz [1; 190] defined the uniform distribution of a sequence $\theta = (\alpha_i)$ of elements of Φ' in the following way. For any $\beta \in \Phi'$ and any positive integers n and k, define $\theta_k(n, \beta)$ as the number of terms among $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that deg $((\alpha_i - \beta)) < -k$. Then the sequence θ is uniformly distributed modulo 1 in Φ' if

(1.2)
$$\lim_{n\to\infty} n^{-1}\theta_k(n,\beta) = q^{-k} \text{ for all } k \text{ and } \beta \in \Phi'.$$

Received September 16, 1968.