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1. Introduction. If A C C, we say that A is extendible to a connected subset
B of C if A B, and if every function holomorphic about A is the restriction of
a function holomorphic about B. When is a set A extendible to a B containing
an open set? Theorem 1 below indicates the answer is "almost always".

n+l times

Let 97d {]" T+1--,Cn, ] is C where Tn+’ is the (n -t- 1) torus, 1
Give E the C topology" uniform convergence of derivatives up to order
with k sufficiently large (/c > n).

TEOREM 1. There exists an open and dense subset 0 o] such that . 0
implies that ](T"+) is extendible to a set containing an open subset o] C".

It is interesting to compare this "holomorphic hull" theorem with its "convex
hull" analogue, whose proof is easy to obtain.

Let {1: I -- R", is C(R)}, where I [0, 1], and give 9 the C topology.
If A R, let ch A denote the convex hull of A.

TEOV.M 1. There is an open and dense subset o] 9 such that ] . implies
that ch I(I) contains an open set.
The proof of Theorem 1 depends upon being able to create a small ’bump’

in a given 1: I -- R". This is easily done by adjusting ] to make 1’, 1", (’)
linearly independent. Creation of an appropriate ’bump’ in given

Tn+ -- C to prove Theorem 1 is not as obvious--we must use the local
criterion for extendibility developed in [2].
Note further that n -[- 1 is minimal for Theorem 1. If we consider ’[] T" -- C, is C with a C topology, then the conclusion is no longer true.

Indeed, for n 2, R. O. Wells [4] shows that there are open sets S and S
of i)E’ so that ] $1 implies ](T) is not extendible, and if ] S, then ](T) is
extendible to at least a three-dimensional subset of C.
Theorem 1 tends to support Bishop’s remark [1]" "It is thought that a

manifold M"+ C C has, in general, the property that holomorphic functions
in a neighborhood of M extend to be holomorphic in some fixed open set."
The reasoning presented here is purely local and does not depend on special
properties of T"+. A detailed discussion of Bishop’s statement, for arbitrary
M"+, is contained in [3], where more precise information is obtained by using
general transversality theorems. The proof of Theorem 1 in this paper con-
tains some points essentially different from [3]. Also, the transversality is
isolated and confined to three rather simple observations. So this proof is
perhaps more palatable to the analyst.
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