THE RADIUS OF THE ESSENTIAL SPECTRUM

BY ROGER D. NUSSBAUM

Introduction. Let T be a closed, densely defined linear operator on a Banach space X. F. E. Browder [1] defined the essential spectrum of T, ess (T), to be the set of $\lambda \in \sigma(T)$, the spectrum of T, such that at least one of the following conditions holds: (1) $R(\lambda - T)$, the range of $\lambda - T$, is not closed; (2) λ is a limit point of $\sigma(T)$; (3) $\bigcup_{r\geq 1} N(\lambda - T)^r$ is infinite dimensional, where N(A) denotes the null space of a linear operator A. Browder proved that $\lambda_0 \notin \operatorname{ess}(T)$ iff for some $\delta > 0$, λ is in the resolvent set of T for $0 < |\lambda - \lambda_0| < \delta$ and the Laurent expansion of $(\lambda - T)^{-1}$ around λ_0 has only a finite number of non-zero coefficients with negative indices.

In this paper we shall consider bounded T and we shall obtain natural formulas, analogous to the usual spectral radius formula, for $r_{\epsilon}(T) = \sup \{|\lambda| : \lambda \varepsilon \operatorname{ess}(T)\}$. The basic tool we shall use is the "measure of noncompactness," a notion which was introduced by C. Kuratowski in 1930 [7].

1. We begin with some definitions. Let X be a complete metric space and A a bounded subset of X. Following Kuratowski [7], we define $\gamma(A)$, which we shall call the measure of noncompactness of A, to be inf $\{d > 0: \text{ there exists a} finite number of sets <math>S_1, \dots, S_n$ such that diameter $(S_i) \leq d$ and $A = \bigcup_{i=1}^n S_i\}$. Though we shall use the measure of noncompactness only for linear maps, we should remark that it is a useful tool in considering nonlinear problems. For instance, G. Darbo [2] and the author [8], [10] have obtained fixed point theorems for nonlinear maps by utilizing the measure of noncompactness.

If A and X are as above, we define the ball measure of noncompactness of A in X, $\tilde{\gamma}_X(A)$, to be inf $\{r > 0$: there exists a finite number of balls V_1, \dots, V_n with centers in X and radii r such that $A \subset \bigcup_{i=1}^n V_i\}$. The ball measure of noncompactness was introduced by Goldenstein, Gohberg, and Markus [3] and later studied by Goldenstein and Markus [5]. Apparently they were unaware of the work of Kuratowski and Darbo. The reader should note that our terminology differs from that in [5]: Goldenstein and Markus call the ball measure of noncompactness of A in X simply the measure of noncompactness and write $q_X(A)$ instead of $\tilde{\gamma}_X(A)$.

The reason for our terminology is simple: since a complete metric space is compact iff it is totally bounded, $\gamma(A) = 0$ iff $\tilde{\gamma}_x(A) = 0$ iff A has compact closure.

If X is a Banach space and A and B are bounded subsets of X, Darbo [2] has shown that $\gamma(A + B) \leq \gamma(A) + \gamma(B)$, where $A + B = \{a + b : a \in A, b \in B \text{ and } \gamma \text{ (convex hull of } A) = \gamma(A)$. In a similar way one can prove that

Received March 10, 1969; in revised form May 15, 1969.