METRIC-DEPENDENT FUNCTION d_{2} AND COVERING DIMENSION

By J. H. Roberts

1. Introduction. In [5], K. Nagami and the author introduced the metricdependent function d_{2}, defined for every metric space (X, ρ).

Definition. $\quad d_{2}(X, \rho)$ is the smallest integer n (if such integer exists) such that if $C_{1}, C_{1}^{\prime} ; \cdots ; C_{n+1}, C_{n+1}^{\prime}$ are $n+1$ pairs of closed sets with $\rho\left(C_{i}, C_{i}^{\prime}\right)>0$ for $i=1,2, \cdots, n+1$, then there exist closed sets B_{1}, \cdots, B_{n+1} with B_{i} separating C_{i} from C_{i}^{\prime} in X and such that $\bigcap_{i=1}^{n+1} B_{i}=\varnothing$. If no such integer n exists, then $d_{2}(X, \rho)=\infty$.

It is natural to think of d_{2} as "Eilenberg-Otto positive distance dimension", for the following reason: If the requirement " $\rho\left(C_{i}, C_{i}^{\prime}\right)>0$ " is replaced by " $C_{i} \cap C_{i}^{\prime}=\varnothing$ ", one obtains the Eilenberg-Otto characterization of covering dimension (applicable even if the space is merely normal). (See [1], [2], and [4].) This function d_{2} is closely related to metric dimension, denoted μ dim, where $\mu \operatorname{dim}(X, \rho)$ is the smallest integer n such that for every $\epsilon>0$ there exists an open cover of X of mesh $<\epsilon$ and order $\leq n+1$. In [6] it is shown that $d_{2}(X, \rho) \leq \mu \operatorname{dim}(X, \rho)$, and for every integer $n \geq 2$ an example X_{n} is constructed such that $d_{2}\left(X_{n}, \rho\right)=[n / 2]<\mu \operatorname{dim}(X, \rho)=n$. Now Katetov [3] has shown that $2 \mu \operatorname{dim}(X, \rho) \geq \operatorname{dim} X$ (covering dimension). The purpose of the present paper is to prove this same result for d_{2}.
Theorem. For every non-vacuous metric space $(X, \rho), 2 d_{2}(X, \rho) \geq \operatorname{dim} X$.
2. Intuitive guide to the proof. Let (X, ρ) be a fixed non-vacuous metric space, set $d_{2}(X, \rho)=k$ (there is nothing to prove if $d_{2}(X, \rho)=\infty$), and let $C_{1}, C_{1}^{\prime} ; \cdots ; C_{2 k+1}, C_{2 k+1}^{\prime}$ be $2 k+1$ pairs of closed sets with $C_{i} \cap C_{i}^{\prime}=\varnothing$. The aim is to prove $\operatorname{dim} X \leq 2 k$ by finding closed sets $B_{1}, \cdots, B_{2 k+1}$ such that B_{i} separates C_{i} from C_{i}^{\prime}, and $\bigcap_{i=1}^{2 k+1} B_{i}=\varnothing$-the Eilenberg-Otto characterization. To apply our hypothesis that $d_{2}(X, \rho)=k$ we need sets $C_{i}^{*}, C_{i}^{\prime *}$ at positive distance, and the function α (§3) leads to a breakdown $C_{i}=\bigcup_{i=1}^{\infty} C_{i j}$ and $C_{i}^{\prime}=\bigcup_{i=1}^{\infty} C_{i j}^{\prime}$ such that $\rho\left(C_{i j}, C_{i j}^{\prime}\right)>0$ for every i and j. It would be appreciably easier to prove that $2 d_{2}(X, \rho)+1 \geq \operatorname{dim} X$, because in that case we would have $2 k+2(=2(k+1))$ pairs C_{i}, C_{i}^{\prime}. In the actual case a pair of level surfaces of the function α serves as the ($2 k+2$)-th pair, in some applications of the hypothesis.
3. The function α, sets D_{i}, M_{i} and F_{i}. We want to have a real function $\alpha: X \rightarrow(0, \infty)$, such that for every $\epsilon>0$, in the space $X_{\epsilon}=\{x: \alpha(x) \geq \epsilon\}$

Received March 6, 1969. Presented to the American Mathematical Society in February, 1969, Abstract 69T-G71. The author thanks the National Science Foundation for early support of research in the area of this paper.

