ELEMENTARY EXTENSIONS WITHIN REDUCED POWERS

By Philip Olin

If \mathfrak{A} is a relational system and D a filter on an index set I then we can form the reduced power \mathfrak{A}^{I}/D (see [1]) and with the natural identification, $\mathfrak{A} \subseteq \mathfrak{A}^{I}/D$. The purpose of this paper is to discuss elementary extensions \mathfrak{B} of \mathfrak{A} such that $\mathfrak{A} \subseteq \mathfrak{B} \subseteq \mathfrak{A}^{I}/D$. (We restrict our attention to countable languages.) If D is an ultrafilter, a basic result due to Łoś [4] and proved in [1] states that for any formula $\varphi(x_1, \cdots, x_n)$ and any $b_1/D, \cdots, b_n/D$ in $\mathfrak{A}^{I}/D, \mathfrak{A}^{I}/D \models \varphi(b_1/D, \cdots, b_n/D)$ if and only if $\{i \mid \mathfrak{A} \models \varphi(b_1(i), \cdots, b_n(i))\} \in D$. If, however, D is just a filter on I, then in general \mathfrak{A} and \mathfrak{A}^{I}/D have different theories, and Łoś' theorem does not hold. We call subsystems \mathfrak{B} of \mathfrak{A}^{I}/D which do satisfy Loś' theorem Łoś subsystems. These, of course, are elementary extensions of \mathfrak{A} , as is \mathfrak{A}^{I}/D if D is an ultrafilter.

Since \mathfrak{A} and \mathfrak{A}^{I}/D have in general different theories, there are two embedding problems. One problem is to determine when \mathfrak{A}^{I}/D is universal. Some results in this direction have been obtained by Galvin [2]. Another problem is to determine when systems which are elementarily equivalent to \mathfrak{A} and have power \leq that of \mathfrak{A}^{I}/D can be embedded in \mathfrak{A}^{I}/D . In §3 below we show that if D is an (ω, α) -regular filter on a set I, then every elementary extension of \mathfrak{A} of power $\leq \alpha$ can be embedded in \mathfrak{A}^{I}/D as a Łoś subsystem. If, in addition, we assume that $\alpha = \omega$ and that \mathfrak{A} has cardinality ω , then every elementary extension of \mathfrak{A} of power $\leq \omega_1$ can be embedded in \mathfrak{A}^{I}/D as a Łoś subsystem. The method of proof resembles methods used by Keisler in [3] and extends techniques of [5]. As a corollary we get that \mathfrak{A} is elementarily equivalent to \mathfrak{B} if and only if \mathfrak{A} and \mathfrak{B} give rise to isomorphic Łoś systems.

In §1 properties of Loś systems are discussed and a characterization due to M. Morley given. Under the added assumption of \mathfrak{A} having definable Skolem functions, yet another characterization of Loś systems is given and a particular subclass of Loś systems is defined.

In §2 the existence of non-trivial Loś systems is discussed (\mathfrak{A} is always Loś), and it is shown that a sufficient condition for this to happen is that D be an (ω, α) -regular filter, where α is the cardinality of the universe of \mathfrak{A} .

Some of these results, including Theorem 3.1, were announced in [6]. It was stated there that Theorem 3.1 held for $c(\mathfrak{C}) \leq \alpha^+$ and this was later corrected to read $c(\mathfrak{C}) \leq \alpha$. The first statement of the theorem remains an open question for $\alpha > \omega$, even when D is an ultrafilter.

The author wishes to acknowledge valuable conversations on the subject of

Received August 18, 1968. This work was partially supported by the United States Air Force under contract AFOSR-68-1402.