CONCERNING WHITNEY'S REPRESENTATIONS OF DIFFERENTIABLE EVEN AND ODD FUNCTIONS

By Lowell Schoenfeld

In a recent paper [2], I proved the following result concerning the differentiability of F(x) = N(x)/D(x) where N and D have multiple order zeros at ξ .

THEOREM 0. Let $0 \le k \le n$. Suppose that the derivatives $N^{(n)}$ and $D^{(n)}$ are continuous on a neighborhood of ξ , that $N^{(n+1)}(\xi)$ and $D^{(n+1)}(\xi)$ exist, and that

$$N(\xi) = N'(\xi) = \cdots = N^{(k)}(\xi) = 0$$

$$D(\xi) = D'(\xi) = \cdots = D^{(k)}(\xi) = 0 \neq D^{(k+1)}(\xi)$$

If $F(\xi) = N^{(k+1)}(\xi)/D^{(k+1)}(\xi)$ and F(x) = N(x)/D(x) for $x \neq \xi$, then $F^{(n-k)}$ exists and is continuous on some neighborhood of ξ .

In this result F may be complex-valued, but I take x and ξ to be real. The proof rested on Lemma 2 below and this, in turn, was an easy consequence of the following result which I proved from Taylor's theorem with integral remainder.

LEMMA 1. Let $L^{(n)}$ be continuous on a neighborhood of ξ , and let $L^{(n+1)}(\xi)$ exist. Then there exists a function Ψ such that:

(a)
$$L(x) = \sum_{j=0}^{n+1} \frac{L^{(j)}(\xi)}{j!} (x-\xi)^j + \Psi(x)$$

(b) $\Psi^{(n)}$ exists and is continuous on some neighborhood of ξ

(c)
$$\Psi^{(k)}(x) = o(x - \xi)^{n+1-k} \text{ as } x \to \xi \quad \text{for } k = 0, 1, \cdots, n.$$

LEMMA 2. Let $L^{(n)}$ be continuous on a neighborhood of ξ , and let $L^{(n+1)}(\xi)$ exist. Let $0 \le k \le n$, and define $\lambda(\xi) = L^{(k+1)}(\xi)/(k+1)!$ but for $x \ne \xi$ let

$$\lambda(x) = \left\{ L(x) - \sum_{j=0}^{k} \frac{L^{(j)}(\xi)}{j!} (x - \xi)^{j} \right\} / (x - \xi)^{k+1}$$

Then $\lambda^{(n-k)}$ exists and is continuous on some neighborhood of ξ . Moreover,

(d)
$$\lambda^{(m)}(\xi) = \frac{m!}{(m+k+1)!} L^{(m+k+1)}(\xi) \quad \text{if } 0 \le m \le n-k$$

(e)
$$\lim_{x \to \xi} (x - \xi)^{m+k-n} \lambda^{(m)}(x) = 0 \quad if \quad n-k+1 \le m \le n.$$

Here, the result (d) was stated in Remark 4 of the earlier paper; and (e) is a consequence of the result proved there that $\varphi^{(m)}(x) = o(x - \xi)^{n-k-m}$ where $\varphi(x)$ is $\lambda(x)$ plus a polynomial of degree not exceeding $n - k \leq m - 1$. Clearly $\lambda^{(n)}$ is continuous on a deleted neighborhood of ξ .

Received July 16, 1968.