AN ELEMENTARY APPROACH TO DIOPHANTINE
EQUATIONS OF THE SECOND DEGREE

By James C. Owings, JR.

If 2 is a root of the Diophantine equation az® + bz + ¢, then ’, where 2"
is defined by the relation az’ = —az — b, is also a root, since az® + bz + ¢ =
z(ax + b) + ¢ = z(—a2’) + ¢ = 2'(—ax) + ¢ = (a2’ + b) + ¢ = a2’® +
ba’ 4+ ¢. This simple observation is the basis for a very elementary, and ap-
parently little-explored, approach to the solution of Diophantine equations
in the second degree with any number of unknowns. In this paper we shall be
principally concerned with integral solutions, although our methods also have
application to the determination of rational solutions. Strictly speaking, a
solution to a Diophantine equation is a solution in rational numbers; however,
unless otherwise indicated, we shall use the terms solution and integral solu-
tion synonymously.

In §1, we use our approach to solve the binomial equation (x ;/I_ 1) = (y _::_ 1)‘

and we express its solutions in terms of Fibonacci numbers. At the same time,
we prove a result (Theorem 1) which applies directly to a large class of 2-
variable Diophantine equations. In §2, we discuss the situation for three
variables. The notion of a planar equation is introduced and the property of
being planar is characterized (Theorem 2). We then (§3) analyze in detail
the planar equation 2° + y* + 2 — 2y — x2 — yz — z — 2y — 3z = 0, showing
that its solution set consists of two infinite “planes” or triangular lattices of
integers. In §4 we give an algorithm (Theorem 3) for solving directly a much
wider class of 2-variable equations than that covered by Theorem 1. In fact,
Theorem 3 applies to any equation one could reasonably expect to be amenable
to our approach. The advantage of Theorems 1 and 3 over the traditional
approach is that when they apply (as they do to most examples treated in the
literature), the solutions are found very much faster, since it is not necessary
to first perform a transformation on the equation. In §5 we solve all 2-variable
Diophantine equations (by solving u* — Dv* = k for any choice of the integers
D, k) and compare our method to the classical one of Lagrange. In this way
we show that Theorem 1 applies indirectly to any 2-variable equation, but
only after a series of three transformations, the first two quadratic and the
last linear.

1. The equation (x —I?; 1) = (y i”l_ 1) ; a useful 2-variable theorem. It is well

known (see §5) that the solution in integers of any equation ax®+bxy-cy®*+dz+
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