SEQUENCES AND INVERSIONS

By L. Carlitz

1. Let $k_{1}, k_{2}, \cdots, k_{n}$ be fixed non-negative integers and put

$$
\begin{equation*}
m=k_{1}+k_{2}+\cdots+k_{n} . \tag{1.1}
\end{equation*}
$$

We consider sequences of integers

$$
\begin{equation*}
\sigma=\left(a_{1}, a_{2}, \cdots, a_{m}\right) \tag{1.2}
\end{equation*}
$$

where exactly k_{1} of the a_{i} equal 1 , exactly k_{2} equal $2, \cdots$, exactly k_{n} equal n. An inversion is a pair i, j such that

$$
\begin{equation*}
i<j, \quad a_{i}>a_{i} \tag{1.3}
\end{equation*}
$$

We seek

$$
\begin{equation*}
N_{n}(r)=N\left(r ; k_{1}, k_{3}, \cdots, k_{n}\right), \tag{1.4}
\end{equation*}
$$

the number of sequences (1.2) with exactly r inversions. In the special case $k_{1}=k_{2}=\cdots=k_{n}=1$ the problem has been discussed by Netto [1; 94]. Also it is known that when $k_{1}=k_{2}=\cdots=k_{n}=1$,

$$
\begin{equation*}
\sum_{r=0}^{\frac{1}{n}(n-1)} N_{n}(r) x^{r}=\frac{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right)}{(1-x)^{n}} . \tag{1.5}
\end{equation*}
$$

This result was stated as a problem in Elemente der Mathematik [2].
C. A. Church has informed the writer that the formula (1.5) was first obtained by Rodrigues [3].

In the present note we show, that for arbitrary nonnegative $k_{1}, k_{2}, \cdots, k_{n}$

$$
\begin{equation*}
\sum_{r=0} N\left(r ; k_{1}, k_{2}, \cdots, k_{n}\right) x^{r}=\frac{\left[k_{1}+k_{2}+\cdots+k_{n}\right]!}{\left[k_{1}\right]!\left[k_{2}\right]!\cdots\left[k_{n}\right]!} \tag{1.6}
\end{equation*}
$$

where

$$
[k]!=(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right)
$$

It is clear that (1.1) reduces to (1.5) when $k_{1}=k_{2}=\cdots=k_{n}=1$. Some additional properties of $N\left(r ; k_{1}, \cdots, k_{n}\right)$ are also obtained.

The quotient

$$
\begin{equation*}
\left[k_{1}, k_{2}, \cdots, k_{n}\right]=\frac{\left[k_{1}+k_{2}+\cdots+k_{n}\right]!}{\left[k_{1}\right]!\left[k_{2}\right]!\cdots\left[k_{n}\right]!} \tag{1.7}
\end{equation*}
$$

evidently reduces to the multinomial coefficient

