A RESULT ON UNIONS OF FLAT CELLS

By R. B. Sher

1. Introduction. In this paper we obtain the following result concerning unions of flat cells in Euclidean space.

Theorem. Suppose $1 \leq m<n, q \geq 3$, and $t=q, q-1$ or $q-2$. Then there exist t-cells $E_{1}, E_{2}, \cdots, E_{n}$ in E^{q} such that
(1) $E_{1}, E_{2}, \cdots, E_{n}$ meet in a $q-3$)-cell on the boundary of each,
(2) any m of the cells $E_{1}, E_{2}, \cdots, E_{n}$ are simultaneously flat in E^{a}, and
(3) no $m+1$ of the cells $E_{1}, E_{2}, \cdots, E_{n}$ are simultaneously flat in $E^{\text {a }}$.

Furthermore, the flattening homeomorphism guaranteed by (2) can be realized as the final stage of an ambient isotopy of E^{α} which is fixed outside a compact set.

The theorem is proved in the case $q=3$ by modifying a construction of Debrunner and Fox [3]. Multiple suspension of these examples completes the proof for the case $q>3$. This technique (or that of coning or crossing with cubes) is a rather standard one which has been frequently used to extend 3 -dimensional results.

In case $q=3$ and $m=n-1$, the result of the theorem is explicit in [3], while the case $n=2$ and $t=q-2$ has been done by Sosinskiy [5] and Tindell [6]. Results of Černavskir [2] indicate the non-existence of such examples when the cells meet in a cell whose dimension is not $q-3$. Related problems, in the case $n=2$, have been studied by Cantrell [1] and Lacher [4].

By one-point compactification, the theorem is seen to be true with E^{q} replaced by S^{a}.

It is assumed that the reader is familiar with [3].
2. Definitions and notation. We regard E^{α}, Euclidean q-space, as the set of points (x_{1}, x_{2}, \cdots) in real Hilbert space with $x_{q+1}=x_{a+2}=\cdots=0$. We shall identify the point $\left(x_{1}, x_{2}, \cdots\right)$ in E^{q} with the q-tuple $\left(x_{1}, \cdots, x_{q}\right)$. Notice that $E^{1} \subset E^{2} \subset E^{3} \subset \cdots$.

A set of points in E^{α} is said to be in general position if, whenever $1<k \leq q+1$, no k points of the set lie in a $(k-2)$-hyperplane of $E^{\text {q }}$. If $r=0,1, \cdots$, or q, an r-simplex σ^{r} in E^{α} is the convex hull of a set $\left\{a^{0}, a^{1}, \cdots, a^{r}\right\}$ of $r+1$ points in general position in E^{α}. A (proper) face of σ^{r} is a simplex determined by some (proper) subset of $\left\{a^{0}, a^{1}, \cdots, a^{r}\right\}$. The interior of σ^{r}, denoted Int σ^{r}, consists of those points in σ^{r} which lie in no proper face of σ^{r}. The boundary of σ^{r},

[^0]
[^0]: Received April 9, 1968. This research was supported by the National Science Foundation under NSF Grant GP-6016.

