A RESULT ON UNIONS OF FLAT CELLS

By R. B. Sher

1. Introduction. In this paper we obtain the following result concerning unions of flat cells in Euclidean space.

THEOREM. Suppose $1 \le m < n, q \ge 3$, and t = q, q - 1 or q - 2. Then there exist t-cells E_1, E_2, \dots, E_n in E^q such that

- (1) E_1 , E_2 , \cdots , E_n meet in a (q-3)-cell on the boundary of each,
- (2) any m of the cells E_1 , E_2 , \cdots , E_n are simultaneously flat in E^a , and
- (3) no m + 1 of the cells E_1, E_2, \dots, E_n are simultaneously flat in E^a .

Furthermore, the flattening homeomorphism guaranteed by (2) can be realized as the final stage of an ambient isotopy of E^a which is fixed outside a compact set.

The theorem is proved in the case q = 3 by modifying a construction of Debrunner and Fox [3]. Multiple suspension of these examples completes the proof for the case q > 3. This technique (or that of coning or crossing with cubes) is a rather standard one which has been frequently used to extend 3-dimensional results.

In case q = 3 and m = n - 1, the result of the theorem is explicit in [3], while the case n = 2 and t = q - 2 has been done by Sosinskii [5] and Tindell [6]. Results of Černavskii [2] indicate the non-existence of such examples when the cells meet in a cell whose dimension is not q - 3. Related problems, in the case n = 2, have been studied by Cantrell [1] and Lacher [4].

By one-point compactification, the theorem is seen to be true with E^{a} replaced by S^{a} .

It is assumed that the reader is familiar with [3].

2. Definitions and notation. We regard E^{a} , Euclidean q-space, as the set of points (x_{1}, x_{2}, \cdots) in real Hilbert space with $x_{q+1} = x_{q+2} = \cdots = 0$. We shall identify the point (x_{1}, x_{2}, \cdots) in E^{a} with the q-tuple (x_{1}, \cdots, x_{q}) . Notice that $E^{1} \subset E^{2} \subset E^{3} \subset \cdots$.

A set of points in E^a is said to be in general position if, whenever $1 < k \le q + 1$, no k points of the set lie in a (k - 2)-hyperplane of E^a . If $r = 0, 1, \dots$, or q, an r-simplex σ^r in E^a is the convex hull of a set $\{a^0, a^1, \dots, a^r\}$ of r + 1 points in general position in E^a . A (proper) face of σ^r is a simplex determined by some (proper) subset of $\{a^0, a^1, \dots, a^r\}$. The *interior* of σ^r , denoted Int σ^r , consists of those points in σ^r which lie in no proper face of σ^r . The boundary of σ^r ,

Received April 9, 1968. This research was supported by the National Science Foundation under NSF Grant GP-6016.