HOLOMORPHIC FUNCTIONS OF POLYNOMIAL GROWTH ON BOUNDED DOMAINS

By Yum-Tong Siu

In [4] R. Narasimhan proved the following theorem concerning holomorphic functions of polynomial growth: Suppose g is a holomorphic function defined on some open neighborhood of the closure of a bounded open subset Ω of \mathbf{C}^{n}. If f is a holomorphic function of polynomial growth on Ω such that $f=g h$ for some holomorphic function h on Ω, then h has polynomial growth on Ω.

It is natural to raise the following question:
(1) Suppose $\left(\varphi_{i j}\right)_{1 \leq i \leq r, 1 \leq i \leq s}$ is a matrix of holomorphic functions defined on some neighborhood of the closure of a bounded open subset Ω of \mathbf{C}^{n}. Suppose $\left(f_{i}\right)_{1 \leq i \leq r}$ is an r-tuple of holomorphic functions on Ω having polynomial growth and for some s-tuple of holomorphic functions $\left(g_{i}\right)_{1 \leq i \leq s}$ we have $f_{i}=\sum_{i=1}^{i} \varphi_{i j} g_{i}, 1 \leq i \leq r$, on Ω. Can we always find an s-tuple of holomorphic functions $\left(h_{i}\right)_{1 \leq i \leq s}$ on Ω having polynomial growth such that $f_{i}=\sum_{i=1}^{i} \varphi_{i j} h_{i}, 1 \leq i \leq r ?$
In this paper we give an affirmative answer for (1) in the case when Ω is Stein (Theorem 2 below). First we prove an infinitely differentiable analogue of our result by the partition of unity (Theorem 1 below) and then derive our result by the L^{2}-estimates for the $\bar{\partial}$ operator.

1. Notations. n is a fixed natural number and $m=2 n$. $\mathbf{N}=$ the set of all natural numbers. $\mathbf{N}^{*}=$ the set of all nonnegative integers. $\mathbf{R}_{1}=\{c \varepsilon \mathbf{R} \mid c \geq 1\}$. $\mathbf{R}_{+}=\left\{c \varepsilon \mathrm{R}^{\prime} \mid c>0\right\}$.
$x=\left(x_{1}, \cdots, x_{m}\right)$ and $z=\left(z_{1}, \cdots, z_{n}\right)$ denote respectively points in R^{m} and $\mathbf{C}^{n} . \quad x$ is identified with z by $z_{k}=x_{k}+i x_{n+k}, 1 \leq k \leq n . d x=d x_{1} \cdots d x_{m}$.

$$
|x|=\left(\sum_{k=1}^{m}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

If $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right) \varepsilon\left(\mathbf{N}^{*}\right)^{m}$, then

$$
|\alpha|=\sum_{k=1}^{m} \alpha_{k}, \quad \alpha!=I_{k=1}^{m}\left(\alpha_{k}\right)!
$$

and

$$
D^{\alpha}=\partial^{|\alpha|} / \partial x_{1}^{\alpha_{1}} \cdots \partial x_{m}^{\alpha_{m}} .
$$

If $E \subset \mathbf{R}^{m}$, then $E^{-}=$the closure of E in \mathbf{R}^{m},

$$
d(x, E)=\inf _{y \in E}|x-y|, \quad d_{E}(x)=d\left(x, \mathrm{R}^{m}-E\right), \quad \text { and } \quad a(E)=\sup _{x, y \in E}|x-y| .
$$

Received March 23, 1968.

