HOLOMORPHIC FUNCTIONS OF POLYNOMIAL GROWTH ON BOUNDED DOMAINS

By Yum-Tong Siu

In [4] R. Narasimhan proved the following theorem concerning holomorphic functions of polynomial growth: Suppose g is a holomorphic function defined on some open neighborhood of the closure of a bounded open subset Ω of \mathbb{C}^n . If f is a holomorphic function of polynomial growth on Ω such that f = gh for some holomorphic function h on Ω , then h has polynomial growth on Ω .

It is natural to raise the following question:

Suppose (φ_{ij})_{1≤i≤r,1≤i≤s} is a matrix of holomorphic functions defined on some neighborhood of the closure of a bounded open subset Ω of Cⁿ. Suppose (f_i)_{1≤i≤r} is an r-tuple of holomorphic functions on Ω having polynomial growth and for some s-tuple of holomorphic functions (g_i)_{1≤i≤s} we have f_i = ∑_{i=1}^s φ_{ij} g_i, 1 ≤ i ≤ r, on Ω. Can we always find an s-tuple of holomorphic functions (h_i)_{1≤i≤s} on Ω having polynomial growth such that f_i = ∑_{i=1}^s φ_{ij}h_i, 1 ≤ i ≤ r?

In this paper we give an affirmative answer for (1) in the case when Ω is Stein (Theorem 2 below). First we prove an infinitely differentiable analogue of our result by the partition of unity (Theorem 1 below) and then derive our result by the L^2 -estimates for the $\bar{\partial}$ operator.

1. Notations. *n* is a fixed natural number and m = 2n. $\mathbf{N} =$ the set of all natural numbers. $\mathbf{N}^* =$ the set of all nonnegative integers. $\mathbf{R}_1 = \{c \in \mathbf{R} \mid c \geq 1\}$. $\mathbf{R}_+ = \{c \in \mathbf{R} \mid c > 0\}$.

 $x = (x_1, \dots, x_m)$ and $z = (z_1, \dots, z_n)$ denote respectively points in \mathbb{R}^m and \mathbb{C}^n . x is identified with z by $z_k = x_k + ix_{n+k}$, $1 \le k \le n$. $dx = dx_1 \cdots dx_m$.

$$|x| = \left(\sum_{k=1}^{m} |x_k|^2\right)^{\frac{1}{2}}.$$

If $\alpha = (\alpha_1, \cdots, \alpha_m) \epsilon (\mathbf{N}^*)^m$, then

$$|\alpha| = \sum_{k=1}^{m} \alpha_k$$
, $\alpha! = \prod_{k=1}^{m} (\alpha_k)!$

and

$$D^{\alpha} = \partial^{|\alpha|} / \partial x_1^{\alpha_1} \cdots \partial x_m^{\alpha_m}.$$

If $E \subset \mathbb{R}^m$, then E^- = the closure of E in \mathbb{R}^m , $d(x, E) = \inf_{y \in E} |x - y|, \quad d_E(x) = d(x, \mathbb{R}^m - E), \text{ and } a(E) = \sup_{x, y \in E} |x - y|.$

Received March 23, 1968.