EXTREME PROPERTIES OF PRODUCTS OF QUADRATIC FORMS

By A. R. Amir-Moéz, G. E. Johnston

For a positive linear transformation A on E_n , a finite dimensional unitary space, the minimum of a product of quadratic forms of A is given in [2]. The maximum is a special case of a theorem of M. Marcus and J. L. McGregor [6]. In this article we study certain generalizations of these ideas.

1. Definitions and notations. The inner product of two vectors α and β will be denoted by (α, β) . The determinant of a linear transformation A on E_n will be denoted by det A. A Hermitian linear transformation is called positive if and only if $(A\xi, \xi) > 0$ for all $\xi \neq 0$. An orthonormal set $\{\alpha_1, \dots, \alpha_k\}$ will be indicated by $\{\alpha_p\}$ o.n. A subspace spanned by the set $\{\gamma_1, \dots, \gamma_p\}$ will be denoted by $[\gamma_1, \dots, \gamma_p]$. The expression $A \mid M$ denotes the linear transformation A restricted to the subspace M, as defined in [1].

2. THEOREM. Let A be a positive linear transformation on E_n with proper values $m_1 \geq \cdots \geq m_n$. Then

$$\sup_{\{\xi_p\}o.n.} F_r((A\xi_1,\xi_1),\cdots,(A\xi_k,\xi_k)) = \binom{k}{r} \left(\frac{1}{k}\sum_{j=1}^k m_j\right)^r$$

where F, denotes the r-th elementary symmetric function, i.e.,

$$F_r(t_1, \cdots, t_k) = \sum_{1 \leq i_1 < \cdots < i_r < k} t_{i_1} \cdots t_{i_r}.$$

The proof is due to M. Marcus and J. L. McGregor [6].

3. THEOREM. Let A be a positive linear transformation on E_n with proper values $m_1 \geq \cdots \geq m_n$. Then

$$\inf_{\substack{M\\ \dim M-h}} \sup_{\substack{\{\xi_p\} \text{ o.n.}\\ \xi_p \in M}} F_r((A\xi_1, \xi_1), \cdots, (A\xi_k, \xi_k))$$

$$= \binom{k}{r} \left(\frac{m_{n-h+1} + \cdots + m_{n-h+k}}{k} \right)^r,$$

where $1 \leq r \leq k \leq h \leq n$, and F_r is the same as in 2.

Proof. Let M be any subspace of E_n such that dim M = h and let P be the orthogonal projection on M. Then, for $\xi \in M$, it follows that $(A \mid M)\xi = PA\xi$. Let $s_1 \geq \cdots \geq s_h$ be the proper values of $A \mid M$. Then, by 2, we have

$$\sup_{\substack{(\xi_p) \circ . n. \\ \xi_p \in \mathcal{M}}} F_r((A\xi_1, \xi_1), \cdots, (A\xi_k, \xi_k)) = \binom{k}{r} \left(\frac{1}{k} \sum_{j=1}^k s_j\right)^r.$$

Received April 8, 1968.