EXTREME PROPERTIES OF PRODUCTS OF QUADRATIC FORMS

By A. R. Amir-Moéz, G. E. Johnston

For a positive linear transformation A on E_{n}, a finite dimensional unitary space, the minimum of a product of quadratic forms of A is given in [2]. The maximum is a special case of a theorem of M. Marcus and J. L. McGregor [6]. In this article we study certain generalizations of these ideas.

1. Definitions and notations. The inner product of two vectors α and β will be denoted by (α, β). The determinant of a linear transformation A on E_{n} will be denoted by det A. A Hermitian linear transformation is called positive if and only if $(A \xi, \xi)>0$ for all $\xi \neq 0$. An orthonormal set $\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$ will be indicated by $\left\{\alpha_{p}\right\}$ o.n. A subspace spanned by the set $\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}$ will be denoted by $\left[\gamma_{1}, \cdots, \gamma_{p}\right]$. The expression $A \mid M$ denotes the linear transformation A restricted to the subspace M, as defined in [1].
2. Theorem. Let A be a positive linear transformation on E_{n} with proper values $m_{1} \geq \cdots \geq m_{n}$. Then

$$
\sup _{\left\{\xi_{p} \mid 0 . \mathrm{n} .\right.} F_{r}\left(\left(A \xi_{1}, \xi_{1}\right), \cdots,\left(A \xi_{k}, \xi_{k}\right)\right)=\binom{k}{r}\left(\frac{1}{k} \sum_{i=1}^{k} m_{i}\right)^{r}
$$

where F_{r} denotes the r-th elementary symmetric function, i.e.,

$$
F_{r}\left(t_{1}, \cdots, t_{k}\right)=\sum_{1 \leq i_{1}<\cdots<i_{r}<k} t_{i 1} \cdot \cdots \cdot t_{i_{r}}
$$

The proof is due to M. Marcus and J. L. McGregor [6].
3. Theorem. Let A be a positive linear transformation on E_{n} with proper values $m_{1} \geq \cdots \geq m_{n}$. Then

$$
\begin{aligned}
& \inf _{\substack{M \\
\operatorname{dim} M=h}} \sup _{\substack{\left\{\xi_{p l} \mid 0 . \mathrm{n.} . \\
\xi_{p}=M\right.}} F_{r}\left(\left(A \xi_{1}, \xi_{1}\right), \cdots,\left(A \xi_{k}, \xi_{k}\right)\right) \\
&=\binom{k}{r}\left(\frac{m_{n-h+1}+\cdots+m_{n-h+k}}{k}\right)^{r},
\end{aligned}
$$

where $1 \leq r \leq k \leq h \leq n$, and F_{r} is the same as in 2 .
Proof. Let M be any subspace of E_{n} such that $\operatorname{dim} M=h$ and let P be the orthogonal projection on M. Then, for $\xi \varepsilon M$, it follows that $(A \mid M) \xi=P A \xi$. Let $s_{1} \geq \cdots \geq s_{h}$ be the proper values of $A \mid M$. Then, by 2 , we have

$$
\sup _{\substack{\left.1 \xi_{p}\right) \cdot . \mathrm{n} . \\ \xi_{p} M M}} F_{r}\left(\left(A \xi_{1}, \xi_{1}\right), \cdots,\left(A \xi_{k}, \xi_{k}\right)\right)=\binom{k}{r}\left(\frac{1}{k} \sum_{i=1}^{k} s_{i}\right)^{r} .
$$

Received April 8, 1968.

