CONVERGENCE RADIUS OF REGULARLY MONOTONIC FUNCTIONS

By W. W. Armstrong

1. Introduction. This paper does not assume familiarity with the literature of regularly monotonic functions [2].

Let ϵ be a function defined on $\{0,1,2, \cdots\}$ with values in $\{-1,1\}$. An infinitely-often differentiable function f on an open interval I will be called ϵ-monotonic in I if for $n=0,1,2, \cdots$ and all $x \varepsilon I$

$$
\epsilon(n) f^{(n)}(x) \geq 0 .
$$

A function which is ϵ-monotonic for some ϵ is called regularly monotonic.
We define $\nu_{\epsilon}(n)$ for $n=0,1,2, \cdots$ as follows: if there exists a least positive integer m with $\epsilon(n) \epsilon(n+1)=-\epsilon(n+m) \epsilon(n+m+1)$, then $\nu_{\epsilon}(n)=m$, otherwise $\nu_{\epsilon}(n)=\infty$. Let ϵ belong to A or B according as ν_{ϵ} assumes the value ∞ or not. The set $\{0,1,2, \cdots\}$ may be decomposed into a succession of disjoint blocks [1] by letting every n with $\nu_{\epsilon}(n)=1$ be the last element of a block.

In case $\epsilon \varepsilon A$, let n be minimal such that $\nu_{\epsilon}(n)=\infty$. In other words, let n be the first element of the last block. If we set $\sigma=\epsilon(n) \epsilon(n+1)$, then for any ϵ-monotonic f on $I,\left|f^{(n)}(\sigma x)\right|$ is absolutely monotonic (all derivatives are non-negative) on $\{x: \sigma x \in I\}$. By using [3; Theorem 3a] one can conclude that f can be continued analytically into the open disk with centre an endpoint of I (the left one if $\sigma=1$, the right one if $\sigma=-1$) and with radius the length of I. If the latter is infinite, the disk becomes a plane or half-plane.

In the case $\epsilon \varepsilon B$, to which we restrict our attention from here on, there are infinitely many blocks each of finite length. It can be shown that an ϵ-monotonic f must either be a polynomial or else have a finite interval as domain, so that we may choose $I=(-1,1)$ without loss of generality.

From now on we write ν instead of ν_{ϵ}. Let $\lambda(k)$ be the number of elements in the k-th block. Thus $\lambda(1)=\nu(0)$, and, in general, $\lambda(r+1)=\nu(\Lambda(r))$ where

$$
\Lambda(r)=\sum_{\mu=1}^{r} \lambda(\mu) .
$$

In this paper we shall often employ the conventions that the empty sum has the value 0 and the empty product the value 1 . Here, for example, $\Lambda(0)=0$, and in $2.5 \Pi(0)=1$.

Our goal is
Received April 3, 1968. Much of this work was done while the author was at the University of British Columbia under a Studentship from the National Research Council of Canada. The guidance of Professor Z. A. Melzak has been invaluable. The author is now at the Département d'informatique, Université de Montréal.

