COMPLETION REGULARITY OF (WEAKLY) BOREL MEASURES

BY NORMAN Y. LUTHER

Let X be a locally compact, Hausdorff topological space. We shall use $\mathfrak{B}, \mathfrak{B}_{\delta}, \mathfrak{B}_{w}$, and $\mathfrak{B}_{\delta w}$ to denote the σ -rings generated by the compact, compact G_{δ} , closed, and closed G_{δ} subsets of X, respectively. Following [1], we shall call them the classes of *Borel*, *Baire*, *weakly Borel* (w.B.), and *weakly Baire* (w.Ba.) subsets of X, respectively. Of course, $\mathfrak{B}_{\delta} \subset \mathfrak{B} \subset \mathfrak{B}_{w}$ and $\mathfrak{B}_{\delta} \subset \mathfrak{B}_{\delta w} \subset \mathfrak{B}_{w}$. Measures defined on these classes of sets which are finite on compact sets will carry the same names.

The concept of a completion regular Borel measure is well known [3; 230]. In this paper we study an extension of this idea to w.B. measures, calling it by the same name "completion regular." We characterize those left [resp., right] invariant w.B. measures on a locally compact, Hausdorff topological group X which are completion regular (Corollary 4.5); a special case of this is the well-known result that every left [resp., right] invariant Borel measure on X is completion regular [3, 64.I]. In §3 we decompose a w.B. measure ν on a locally compact, Hausdorff topological space into the sum of two w.B. measures, one the "largest completion regular part of ν " and the other having zero "largest completion regular part" (see Theorem 3.1 and its corollaries). The latter will be called an anti-completion regular w.B. measure; a study of it, especially in relation to completion regular w.B. measures, is pursued in §2.

Finally, everything in this paper is valid if the class of w.Ba. subsets of X is instead defined to be the σ -algebra \mathfrak{B}_0 generated by the zero-sets in X—i.e., if $\mathfrak{B}_{\delta w}$ is replaced by \mathfrak{B}_0 throughout. (A zero-set in X is a set of the form $f^{-1}(0)$ for some continuous real-valued function f on X.) The relevant facts are that $\mathfrak{B}_{\delta} \subset \mathfrak{B}_0 \subset \mathfrak{B}_{\delta w}$ (if X is locally compact, Hausdorff) and $\mathfrak{B}_0 = \mathfrak{B}_{\delta w}$ if X is normal.

1. Preliminaries. We use extensively the results and methods of [7]. We shall list some of the more basic ones here and give specific references for the remaining ones as we use them.

Let X be simply a set, S be a σ -ring of subsets of X, and μ , ν be measures on S. ν is absolutely continuous with respect to μ , denoted $\nu \ll \mu$, if $\nu(E) = 0$ whenever $E \in S$ and $\mu(E) = 0$ [3; 124]. Following [5], we say that ν is S-singular with respect to μ , denoted $\nu \leq \mu$, if for each $E \in S$ there corresponds a set $F \in S$ such that $F \subset E$, $\nu(F) = \nu(E)$, and $\mu(E) = 0$. A set $A \subset X$ is said to be locally measurable if $A \cap E \in S$ for every $E \in S$ [1; 35]. As is customary [3; 126], we say that ν is singular with respect to μ , denoted $\nu \perp \mu$, if there is a locally measurable set A such that $\nu(E \cap A) = 0 = \mu(E - A)$ for every $E \in S$.

Received March 13, 1968. This work was supported in part by NSF Grant No. 11A-2460, Project 8509.