SOME RESULTS ON PSEUDO VALUATIONS

By James A. Huckaba

1. Introduction and preliminary results. In this paper all rings are commutative, associative, and have identity. If A and B are two rings, B an overring of A, assume that A and B have the same identity. The symbol R_{∞} will denote the extended real number system.

A pseudo valuation on a ring A is a mapping $w: A \rightarrow R_{\infty}$ with the properties:
(i) $w(0)=\infty, w(1)=0, w(x) \geq 0$,
(ii) $w(x-y) \geq \min \{w(x), w(y)\}$,
(iii) $w(x y) \geq w(x)+w(y)$ for all $x, y \varepsilon A$.
w is called a homogeneous pseudo valuation in case:
(iv) $w\left(x^{n}\right)=n \cdot w(x)$ for all positive integers
n and for all $x \in A$.
w is a valuation on A in case:
(v) $w(x y)=w(x)+w(y)$ for all $x, y \varepsilon A$.

Suppose that A is a ring and \mathfrak{a} is an ideal of A. Consider the non-negative integral powers of $\mathfrak{a},\left\{\mathfrak{a}^{n}\right\}$. Define a mapping $v_{\mathfrak{a}}: A \rightarrow R_{\infty}$ such that $v_{\mathrm{a}}(x)=n$ if $x \varepsilon \mathfrak{a}^{n}, x \notin \mathfrak{a}^{n+1}$ and $v_{\mathfrak{a}}(x)=\infty$ if $x \varepsilon \mathfrak{a}^{n}$ for all n. The map v_{a} is clearly seen to be a pseudo valuation on A. Call v_{a} the pseudo valuation associated with the ideal \mathfrak{a}. D. Rees studied this type of pseudo valuation in [3], [4], [5]. His results and definitions which will be needed for this paper will be summarized here. Suppose w is a pseudo valuation on A. Define $\bar{w}(x)=\lim _{n=1}^{\infty} w\left(x^{n}\right) / n$ for each $x \in A$. This limit exists for every $x \varepsilon A$ and is actually equal to $\sup \left\{w\left(x^{n}\right) / n: n=1,2, \cdots\right\}$. Also \bar{w} is a homogeneous pseudo valuation on A. Hence, every pseudo valuation on A may be homogenized.

Now suppose that v_{1}, \cdots, v_{k} are valuations on A. Define $w(x)=$ $\min \left\{v_{1}(x), \cdots, v_{k}(x)\right\}$ on A. Then w is called a subvaluation. (i.e., A subvaluation is a function that can be written as a minimum of valuations.) It is clear that w is a homogeneous pseudo valuation. The set $\left\{v_{1}, \cdots, v_{n}\right\}$ is a representation of w. The representation is irredundant in case for each i, there exists an $x \in A$ such that $w(x)=v_{i}(x)$, but $w(x)<v_{j}(x)$ for every $j \neq i$. Let $A w=\{x \varepsilon A: w(x) \neq \infty\}$. A subset S of $A w$ is said to be w-consistent if for any finite set of elements $a_{1}, a_{2}, \cdots, a_{n} \varepsilon S, w\left(a_{1} a_{2} \cdots a_{n}\right)=$ $w\left(a_{1}\right)+w\left(a_{2}\right)+\cdots+w\left(a_{n}\right)$. For each w-consistent subset S there exists a maximal w-consistent subset S^{\prime} such that $S^{\prime} \supset S$. If $w=\min \left\{v_{1}, \cdots, v_{k}\right\}$ is irredundant, then there exist exactly k maximal w-consistent subsets

