SOME RESULTS ON PSEUDO VALUATIONS

By James A. Huckaba

1. Introduction and preliminary results. In this paper all rings are commutative, associative, and have identity. If A and B are two rings, B an overring of A, assume that A and B have the same identity. The symbol R_{∞} will denote the extended real number system.

A pseudo valuation on a ring A is a mapping $w: A \to R_{\infty}$ with the properties:

- (i) $w(0) = \infty$, w(1) = 0, $w(x) \ge 0$,
- (ii) $w(x y) \ge \min \{w(x), w(y)\},\$
- (iii) $w(xy) \ge w(x) + w(y)$ for all $x, y \in A$.

w is called a homogeneous pseudo valuation in case:

- (iv) $w(x^n) = n \cdot w(x)$ for all positive integers n and for all $x \in A$.
- w is a valuation on A in case:
 - (v) w(xy) = w(x) + w(y) for all $x, y \in A$.

Suppose that A is a ring and \mathfrak{a} is an ideal of A. Consider the non-negative integral powers of \mathfrak{a} , $\{\mathfrak{a}^n\}$. Define a mapping $v_{\mathfrak{a}}: A \to R_{\infty}$ such that $v_{\mathfrak{a}}(x) = n$ if $x \in \mathfrak{a}^n$, $x \notin \mathfrak{a}^{n+1}$ and $v_{\mathfrak{a}}(x) = \infty$ if $x \in \mathfrak{a}^n$ for all n. The map $v_{\mathfrak{a}}$ is clearly seen to be a pseudo valuation on A. Call $v_{\mathfrak{a}}$ the pseudo valuation associated with the ideal \mathfrak{a} . D. Rees studied this type of pseudo valuation in [3], [4], [5]. His results and definitions which will be needed for this paper will be summarized here. Suppose w is a pseudo valuation on A. Define $\bar{w}(x) = \lim_{n=1}^{\infty} w(x^n)/n$ for each $x \in A$. This limit exists for every $x \in A$ and is actually equal to sup $\{w(x^n)/n: n = 1, 2, \cdots\}$. Also \bar{w} is a homogeneous pseudo valuation on A. Hence, every pseudo valuation on A may be homogenized.

Now suppose that v_1 , \cdots , v_k are valuations on A. Define $w(x) = \min\{v_1(x), \cdots, v_k(x)\}$ on A. Then w is called a subvaluation. (i.e., A subvaluation is a function that can be written as a minimum of valuations.) It is clear that w is a homogeneous pseudo valuation. The set $\{v_1, \cdots, v_n\}$ is a representation of w. The representation is irredundant in case for each i, there exists an $x \in A$ such that $w(x) = v_i(x)$, but $w(x) < v_i(x)$ for every $j \neq i$. Let $Aw = \{x \in A : w(x) \neq \infty\}$. A subset S of Aw is said to be w-consistent if for any finite set of elements a_1 , a_2 , \cdots , $a_n \in S$, $w(a_1a_2 \cdots a_n) = w(a_1) + w(a_2) + \cdots + w(a_n)$. For each w-consistent subset S there exists a maximal w-consistent subset S' such that $S' \supset S$. If $w = \min\{v_1, \cdots, v_k\}$ is irredundant, then there exist exactly k maximal w-consistent subsets