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1. Introduction and measure theoretic preliminaries. The chain of abstract
F. and M. Riesz theorems which issued from the work of Helson and Lowdens-
lager [9] (via Bochner’s observation [3] of the generality of their arguments)
was completed by the following

THEOREM. (Ahern [1]) Let X be a compact Hausdorff space, A a sup norm
algebra on X, a non-zero multiplicative linear Junctional on A, and let h be a
representing measure ]or . Then the ]ollowing conditions are equivalent.

(a) /f t A1 (= set of all complex Baire measures on X such that f f d 0
]or all ] A), then the h-continuous part o] , also belongs to AI.

(b) Every representing measure ]or is h-continuous.

In 1967 Glicksberg [6] gave a "universal" F. and M. Riesz theorem. Let
M(A, ) be the set of representing measures for (we retain the notation of
Ahern’s theorem). Glicksberg defines a Baire set E C X to De -null iff t(E) 0
for all # M(A, ) and then notes that M(X) (= space o complex Bire mea-
sures on X) is the direct sum of the space of -continuous measures, i.e., those

M(X) such that (E) 0 whenever E is -null, and the space of -singular
measures, i.e., those t* M(X) such that lives on a -null set (cf. [8; 42]). His
abstract F. and M. Riesz theorem states that if A 1, then the -continuous
and -singular parts of t* also belong to A I. If (b) of Ahern’s theorem holds,
then -continuity (resp., -singularity) is just h-continuity (resp., h-singularity)
so that Ahern’s theorem is a corollary of Glicksberg’s.

In this paper we consider the following situation: X is a set, 2 is a z-algebra
of subsets of X, A is an algebra of bounded, Z-measurable, complex-valued
functions on X and 1 e A, A1 is the set of t e ca(x, Z) (= space of countably
additive complex-valued functions on 2; briefly, measures) such that f ] dr, 0
for all ] A. For S(A), the set of non-zero multiplicative linear functionals
on A, M(A, ) denotes the set of all probability measures t on Z such that
(]) f f d for all ] e A. For S(A) we exhibit a direct sum decomposition
of ca(X, ) such that

(i) for , ca(X, ), one composant is h-continuous for some h , M(A, ),
and the other composant is h-singular for all h e M(A, ),

(ii) (Abstract F. and M. Riesz theorem) If v, Al, then the composants of
also belong to A +/-.
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