ON GROUPS OF LINEAR RECURRENCES. I.

By R. R. Laxton

Introduction. A linear recurrence $\mathfrak{W}=\left\{w_{n}, n \varepsilon \mathbf{Z}\right\}$ of degree m with $f(x)=$ $x^{m}-a_{m-1} x^{m-1}-\cdots-a_{0}$ as companion polynomial is given by a set w_{0}, w_{1}, \cdots, w_{m-1} of numbers together with the relation $w_{n+m}=a_{m-1} w_{n+m-1}+\cdots+$ $a_{0} w_{n}$ for all $n \in Z$ (we assume that not all the a_{i} are zero). The early interest in linear recurrences was in those of degree two with $f(x)=x^{2}-P x+Q \varepsilon Z[x]$ and $w_{0}, w_{1} \varepsilon Z$. Furthermore, the interest was in special sequences; the most frequently considered one was the Lucas sequence \mathscr{I} of $f(x)$ with $i_{0}=w_{0}=0$ and $i_{1}=w_{1}=1$, and occasionally the sequence ε with $e_{0}=w_{0}=2$ and $e_{1}=$ $w_{1}=P$ was studied for its connection with the Lucas sequence. Very occasionally a few other special types of recurrences have been studied (see for example [3]). The recent study of general integral linear recurrences of degree two is largely the work of M. Ward in a whole series of papers (see later references). Besides this, there is the study of general linear recurrences defined over finite fields (see E. Selmer's [8] which also contains an extensive bibliography on the subject). In connection with this class of recurrences a ring structure has been constructed for those with a fixed companion polynomial.

One problem of perennial interest is that of prime divisors of a recurrence. A prime is a divisor of an integer linear recurrence $W=\left\{w_{n}, n \in Z, n \geq 0\right\}$ if it divides some w_{n} of \%. K. Mahler [5] and M. Ward [11] proved that, with the usual exceptions, every linear recurrence of degree two has an infinity of prime divisors (in fact, Mahler proves much more; also the above mentioned result can be generalized for recurrences of degree greater than two). Of course since $i_{0}=0$ in \mathcal{J} every prime is a divisor of a Lucas sequence. However, more can be said; if a prime p does not divide the constant coefficient Q, then p divides the terms of \mathfrak{g} with a certain periodicity and similarly if p is a divisor of \mathbb{W} it divides the terms of ${ }_{W}$ with the same periodicity. One of Ward's main concerns was to obtain general criteria to determine if a prime is a divisor of a recurrence W or not. No really satisfactory criteria is known at present. The divisor problem is the chief interest in this article.

Here we begin a systematic study of linear recurrences of degree two by introducing a commutative group structure $G(f)$ on (essentially) all linear recurrences which have $f(x)$ as companion polynomial. The main feature is that we no longer regard a recurrence as 'starting' from a fixed pair of integers w_{0}, w_{1}, rather we regard it as a doubly infinite sequence of terms, though now not all the terms need be integers (they are from some point onwards). By this means we identify two linear recurrences $\mathcal{W}=\left\{w_{n}, n \varepsilon \mathbf{Z}\right\}$ and $V=\left\{v_{n}, n \varepsilon \mathbf{Z}\right\}$ with the same companion polynomial $f(x)$ if there exists non-zero integers k, l and

