A PAIR OF NON-INVERTIBLE LINKS

By W. C. WHITTEN, JR.

An oriented, ordered link L of μ components tamely imbedded in the oriented 3-sphere S will be called *invertible* if and only if there is an orientation-preserving autohomeomorphism of S which takes each component of L onto itself with reversal of orientation. While the existence of non-invertible knots [4] guarantees non-invertible links, it is of interest to have examples of non-invertible links with components all of which are invertible. It is the purpose of this paper to prove that the links pictured in Figures 1 and 2 are, in fact, non-invertible.

Remark 1. Each component of both links belongs to the knot type of 5₁ and is, therefore, invertible. The link of Fig. 2 is obviously interchangeable. A glance at the (normalized) Alexander polynomial

$$\Delta(x, y) = x^{6}(y^{4} - 2y^{3} + 2y^{2} - y) + x^{5}(-2y^{4} + 3y^{3} - 3y^{2} + 2y - 1)$$

$$+ (x^{4} - x^{3} + x^{2})(y^{4} - y^{3} + y^{2} - y + 1)$$

$$+ x(-y^{4} + 2y^{3} - 3y^{2} + 3y - 2) + (-y^{3} + 2y^{2} - 2y + 1)$$

of the link of Fig. 1 shows that it is not an associate of any of the four L-polynomials, $\Delta(y^{\epsilon_1}, x^{\epsilon_2})$, where each of ϵ_1 and ϵ_2 is either +1 or -1. Hence, the link of Fig. 1 cannot be interchanged.

Remark 2. Let $L = +K_1 \cup \cdots \cup + K_{\mu}$ be a link of μ components, S_{μ} the symmetric group of degree μ , and $Z_2^{\mu+1}$ the direct product of $\mu+1$ copies of the multiplicative group $Z_2 = \{-1, 1\}$. Define the link-symmetric group Γ_{μ} of degree μ (see [5]) to be the split extension of $Z_2^{\mu+1}$ by S_{μ} , where S_{μ} permutes the last μ factors of $Z_2^{\mu+1}$. We shall say that L admits $\gamma = (\epsilon_0, \epsilon_1, \cdots, \epsilon_{\mu}, p)$ of Γ_{μ} , where $\epsilon_i = \pm 1$ and p belongs to S_{μ} , provided there is an autohomeomorphism ψ of S such that $\psi(+S) = \epsilon_0 S$, and $\psi(+K_{\alpha}) = \epsilon_{\alpha} K_{p(\alpha)}$ for each α . To say that L is invertible, then, is to say that L admits $\gamma = (1, -1, \cdots, -1, (1))$ belonging to Γ_{μ} .

Let K be an oriented knot in S and $G = \pi_1$ (S - K). Following Trotter [4], we shall call an element of G, which has linking number +1 with K, a meridian of K provided that for any neighborhood N of K the element can be represented by a path $\gamma\beta\gamma^{-1}$, where γ runs from the basepoint to a point of N - K, and β is a loop in N - K such that $\beta \sim 0$ in N. If, however, for any neighborhood N of K an element of G can be represented by a path $\gamma\beta\gamma^{-1}$, where β is a loop in N - K such that $\beta \sim K$ in N and $\beta \sim 0$ in S - K, the element is called a longitude of K. Any automorphism of G taking the class of meridians into the

Received February 3, 1968.