NONEXPANSIVE MAPPINGS AND THE WEAK CLOSURE OF SEQUENCES OF ITERATES

By W. A. Kirk

1. Introduction. Let X be a Banach space and K a nonempty closed convex subset of X. A mapping $T: K \rightarrow K$ is called nonexpansive if $\|T x-T y\| \leq$ $\|x-y\|$ for all $x, y \in K$. Interest in nonlinear nonexpansive mappings has arisen quite recently, (cf. [1], [2], [4] - [9]). In [5] De Marr proves that if K is compact, then every commutative family of nonexpansive mappings of K into itself has a common fixed-point. In generalizing this theorem, Belluce and the writer [1] employed the assumption that for each $x \in K$, the closure of $\left\{T^{n} x\right\}$ contains a point of some given compact set M. (This assumption has also been used by Göhde [7; 54].) In this paper we make a weaker assumption. We are primarily interested here in nonexpansive mappings T which have the property that for each $x \in K$ the weak closure of the sequence $\left\{T^{n} x\right\}$ of iterates contains a point of some given set M. Assumptions on M will vary.

In §2 of this paper we note an improvement of a theorem of [1] and prove some related theorems. An example is given in $\S 3$ which shows that certain hypotheses of one of our theorems cannot be removed, and in the next section, the writer's theorem of [8] is extended to a wider class of spaces for mappings which are strictly contractive.

Throughout the paper we use the following notation: X always denotes a Banach space. For a subset A of $X, \operatorname{coA} A$ and $c o A$ denote, respectively, the convex hull and the closed convex hull of $A ; w c A$ denotes the weak closure of A. For $A, B \subseteq X$, we let

$$
\begin{aligned}
\delta(A) & =\sup \{\|x-y\|: x, y \in A\} \\
d(A, B) & =\inf \{\|x-y\|: x \varepsilon A, y \varepsilon B\} .
\end{aligned}
$$

2. Weak closure of iterates. The following concept was introduced by Brodskii and Milman [3].

Definition 2.1. A bounded convex subset K of X is said to have normal structure if for each convex subset H of K which contains more than one point there is a point $x \in H$ which is not a diametral point of H (i.e., sup $\{\|x-y\|$: $y \in H\}<\delta(H))$.

A bounded convex subset K of X has normal structure if X is uniformly convex, or if K is compact. (This latter fact is essentially Lemma 1 of [5].)

Received October 5, 1967.

