REMARKS ON UNIVERSAL SENTENCES OF L_{ω_1,ω}

By Jon Barwise

The study of the relationship between the language $\mathbf{L}_{\omega_1,\omega}$ and the class \mathcal{K}_{ω_1} of all countable structures was begun by Dana Scott in [3]. One of the principal results of [3] was the Countable Isomorphism Theorem.

THEOREM (Scott). Let \mathfrak{A} and \mathfrak{B} be countable structures. If \mathfrak{A} and \mathfrak{B} satisfy the same sentences of $\mathbf{L}_{\omega_1,\omega}$, then they are isomorphic. In fact, there is a single sentence $\varphi_{\mathfrak{A}}$ of $\mathbf{L}_{\omega_1,\omega}$ such that for any countable structure \mathfrak{B} , \mathfrak{B} is a model of $\varphi_{\mathfrak{A}}$ if and only if \mathfrak{B} is isomorphic to \mathfrak{A} .

The purpose of this note is to point out uses of an interpolation theorem of Malitz [2] in the study of the relationship between countable structures and universal sentences of $\mathbf{L}_{\omega_1,\omega}$. For example, our first result, an analogue of Scott's Theorem, gives a necessary and sufficient syntactic condition that a countable structure \mathfrak{A} be embeddable in another countable structure \mathfrak{B} . For the most part our notation follows that of [2]. We allow formulas of $\mathbf{L}_{\omega_1,\omega}$ to contain constant and relation symbols, the equality symbol \approx , but for simplicity, no function symbols.

INTERPOLATION LEMMA (Malitz). Let φ_0 and φ_1 be sentences of $\mathbf{L}_{\varphi_1, \omega}$ such that $\varphi_0 \to \varphi_1$ is valid, and φ_1 is universal. Then there is a universal sentence θ , containing constant and relation symbols common to φ_0 and φ_1 , such that $(\varphi_0 \to \theta) \land (\theta \to \varphi_1)$ is valid.

This lemma, as stated in [2], applies only to sentences which do not contain the equality symbol. The extension to the above result is sketched, however.

By a countable structure \mathfrak{A} , we mean a countable set A with a countable number of constants and finitary relations. By extending the Interpolation Lemma to the language containing function symbols, as outlined in [2], we could extend all of our results to structures containing functions. \mathfrak{K}_{ω_1} is the class of all countable structures. We refer to Theorem 1 as the Countable Embedding Theorem.

THEOREM 1. For any two countable structures \mathfrak{A} and \mathfrak{B} , \mathfrak{A} can be embedded in \mathfrak{B} if and only if every universal sentence of $\mathbf{L}_{\omega_1,\omega}$ which holds in \mathfrak{B} also holds in \mathfrak{A} .

Proof. If $\mathfrak{A}_0 \subseteq \mathfrak{A}_1$, then every universal sentence true in \mathfrak{A}_1 is true in \mathfrak{A}_0 . So let \mathfrak{A}_0 and \mathfrak{A}_1 in \mathfrak{K}_{ω_1} be such that every universal sentence true in \mathfrak{A}_1 is true

Received December 4, 1967. Most of the results in this note first appeared in §4 of the author's thesis [1], prepared under the direction of Professor Solomon Feferman, to whom we express our sincere gratitude. The note was written while the author was an N.S.F. Postdoctoral Fellow.