## ON THE ASYMPTOTIC VALUES OF A HOLOMORPHIC FUNCTION WITH NONVANISHING DERIVATIVE

By J. E. McMillan

Let $w=f(z)$ be a holomorphic function defined in the open unit disc $D$, and let $W$ denote the extended $w$-plane. An asymptotic path of $f$ for the value $a \boldsymbol{\varepsilon} W$ is a simple continuous curve $\alpha: z(t), 0 \leq t<1$, lying in $D$ such that $|z(t)| \rightarrow 1$ and $f(z(t)) \rightarrow a$ as $t \rightarrow 1$. If in addition $z(t) \rightarrow e^{i \theta}$ as $t \rightarrow 1$, we say that $\alpha$ ends at $e^{i \theta}$ and that $f$ has the asymptotic value $a$ at $e^{i \theta}$. MacLane [2] has considered the class $\mathfrak{Q}$ which he defined as follows: $f \boldsymbol{\varepsilon} \mathbb{Q}$ if and only if $f$ is a nonconstant holomorphic function defined in $D$ and $\left\{e^{i \theta}: f\right.$ has an asymptotic value at $\left.e^{i \theta}\right\}$ is dense on the unit circumference $C$. We write $f \varepsilon Q_{p}$ if and only if $f \varepsilon \mathbb{Q}$ and each asymptotic path of $f$ ends at a point. According to Bagemihl and Seidel [1], $Q_{p}$ contains the nonconstant normal holomorphic functions. We extend a theorem of MacLane [3, Theorem 9] as follows:

Theorem. Suppose $f \varepsilon \mathbb{Q}_{p}$ and $f^{\prime}(z) \neq 0$. Then for any arc $\gamma \subset C$, there exist distinct points $\zeta_{i} \varepsilon \gamma(j=1,2,3)$ and distinct points $a_{i} \varepsilon W(j=1,2,3)$ such that $f$ has the asymptotic value $a_{i}$ at $\zeta_{i}(j=1,2,3)$.

Remarks. MacLane obtained this same conclusion under the assumptions $f^{\prime} \varepsilon \mathbb{Q}$ and $f^{\prime}(z) \neq 0$. The modular function shows that the number three in the present theorem is best possible.
Proof. Suppose contrary to the assertion that there exists an open arc $\gamma$ of $C$ for which no such $\zeta_{i}$ and $a_{i}$ exist. Then there exists an open arc $\gamma^{\prime} \subset \gamma$ such that at points of $\gamma^{\prime}, f$ has at most two asymptotic values. By a theorem of MacLane $[2 ; 28], f$ has the asymptotic value $\infty$ at each point of a set that is dense on $\gamma^{\prime}$. Thus there exists a finite complex number $a$ such that $f$ has no finite asymptotic value different from $a$ at any point of $\gamma^{\prime}$, and by considering the function $f(z)-a$, we see that we can suppose without loss of generality that $a=0$. Let $\alpha_{1}$ and $\alpha_{2}$ be asymptotic paths of $f$ for the value $\infty$ that end at distinct points $\zeta_{1}$ and $\zeta_{2}$ respectively of $\gamma^{\prime}$. Let $\Delta_{i}(\lambda)(\lambda>0 ; j=1,2)$ be the component of $\{z:|f(z)|>\lambda\}$ that contains all points of $\alpha_{j}$ that are sufficiently near $\zeta_{j}$. Since each asymptotic path of $f$ for the value $\infty$ ends at a point, there exists $M>0$ such that if we let $\Delta_{i}=\Delta_{i}(M)$, then $\bar{\Delta}_{i} \cap C \subset \gamma^{\prime}(j=1,2$; the bar denotes closure in the plane). Since $\Delta_{j}$ contains no asymptotic path of $f$ for a finite value, and since the Riemann surface $\mathcal{S}$ over $W$ onto which $f$ maps $D$ has no (algebraic) branch point, we see that $f$ maps $\Delta_{i}$ onto a copy of the universal covering surface of $\{M<|w|<+\infty\}$. Thus since the boundary of $\Delta_{i}$ relative to $D$ contains no asymptotic path of $f$, we see that it is a single level curve $\Lambda_{i}$ which, according to a theorem of Mac-

Received December 18, 1967. Alfred P. Sloan Research Fellow.

