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1. Introduction. If R is a commutative ring with unit element and Rn is the
ring of n-by-n matrices with entries ia R, call aa element A of R symmetric
if A A’, where A’ is the usual transpose of A. A fundamental property of the
field of real numbers is that every real symmetric matrix is not only congruent,
but actually orthogonally congruent and hence similar, to a real diagonal matrix.
It is the purpose of this paper to investigate the structure of commutative noe-
therian rings having this latter matrix property without the strongly geometric
requirement of orthogonality.

DEFINITION. If n is aa integer >_ 2, a commutative ring R with unit element
is a ds(n)-ring if every symmetric matrix ia Rn is similar in R to a matrix in
diagonal form. R is a ds-ring if it is a ds(n)-ring for every n 2, 3, .-..
We shall show first that a ring which is a direct sum of homomorphic images

of single-variable formal power series rings over real closed fields is a ds-ring.
Then, although no complete characterization is obtained, we shall demonstrate
that a commutative neotheriaa ring which is a ds(n)-ring for some particular
n must have a structure closely related to this and can in particular be imbedded
naturally ia such a ring. The relationship of ds-rings to those rings, already
characterized by the author [5], over which every matrix is equivalent to
diagonal matrix is also discussed.

2. A class of Ds-rings. We first record a useful observation, suppressing
most of its straightforward proof.

LEMMA 1. Direct sums and summands o] ds(n)-rings are ds(n)-rings. I
R is a ds(n)-ring and I is an ideal o] R then the residue ring R/I is a ds(n)-ring.
I] R is a ds(n)-ring and P is a prime ideal o] R then the localization Re is a ds(n)-
ring. In particular, i] an integral domain is a ds(n)-ring, so is its field o] quotients.

Proo]. We prove only the statement about localizations. Let R be a ds(n)-
ring, and P a prime ideal of R. Let A (Re) be symmetric. Then A (a/e,i),
where we may assume that ai a and e; e; for all i and . Since any
finite set of elements in a localization Re may be written with a common de-
nominator, we may assume A to have the form (b/e), where (b;) is a symmetric
matrix ia R. Since R is a ds(n)-ring, there is a diagonal matrix (d;) and an
invertible matrix (c,) so that (c)(b,i) (d,)(c,) ia R. This equality leads
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