ON RINGS OVER WHICH SYMMETRIC MATRICES ARE DIAGONALIZABLE

By Cleon R. Yohe

1. Introduction. If R is a commutative ring with unit element and R_{n} is the ring of n-by- n matrices with entries in R, call an element A of R_{n} symmetric if $A=A^{\prime}$, where A^{\prime} is the usual transpose of A. A fundamental property of the field of real numbers is that every real symmetric matrix is not only congruent, but actually orthogonally congruent and hence similar, to a real diagonal matrix. It is the purpose of this paper to investigate the structure of commutative noetherian rings having this latter matrix property without the strongly geometric requirement of orthogonality.

Definition. If n is an integer ≥ 2, a commutative ring R with unit element is a $d s(n)$-ring if every symmetric matrix in R_{n} is similar in R_{n} to a matrix in diagonal form. R is a $d s$-ring if it is a $d s(n)$-ring for every $n=2,3, \cdots$.

We shall show first that a ring which is a direct sum of homomorphic images of single-variable formal power series rings over real closed fields is a ds-ring. Then, although no complete characterization is obtained, we shall demonstrate that a commutative neotherian ring which is a $d s(n)$-ring for some particular n must have a structure closely related to this and can in particular be imbedded naturally in such a ring. The relationship of $d s$-rings to those rings, already characterized by the author [5], over which every matrix is equivalent to a diagonal matrix is also discussed.
2. A class of Ds-rings. We first record a useful observation, suppressing most of its straightforward proof.

Lemma 1. Direct sums and summands of ds(n)-rings are ds(n)-rings. If R is a ds(n)-ring and I is an ideal of R then the residue ring R / I is a ds(n)-ring. If R is a ds(n)-ring and P is a prime ideal of R then the localization R_{P} is a ds (n) ring. In particular, if an integral domain is a ds(n)-ring, so is its field of quotients.

Proof. We prove only the statement about localizations. Let R be a $d s(n)$ ring, and P a prime ideal of R. Let $A \varepsilon\left(R_{P}\right)_{n}$ be symmetric. Then $A=\left(a_{i j} / e_{i j}\right)$, where we may assume that $a_{i j}=a_{i i}$ and $e_{i i}=e_{i i}$ for all i and j. Since any finite set of elements in a localization R_{P} may be written with a common denominator, we may assume A to have the form ($b_{i j} / e$), where $\left(b_{i j}\right)$ is a symmetric matrix in R_{n}. Since R is a $d s(n)$-ring, there is a diagonal matrix ($d_{i_{i}}$) and an invertible matrix $\left(c_{i j}\right)$ so that $\left(c_{i j}\right)\left(b_{i j}\right)=\left(d_{i j}\right)\left(c_{i j}\right)$ in R_{n}. This equality leads

Received October 6, 1967. This research was supported in part by National Science Foundation grant number GP 7175.

