SOME REMARKS ON THE ENUMERATION OF SYMMETRIC MATRICES

By D. P. Roselle

Professor Carlitz [1] has studied the number, $S_{n}(r)$, of $n \times n$ symmetric integral matrices ($a_{i j}$) satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i i}=r \quad(1<i<n) \tag{1}
\end{equation*}
$$

He evaluated $S_{n}(1)$ and $S_{n}(r)$ for $1 \leq n \leq 4$.
H. Gupta [2] has considered the numbers $S_{n}(2)$ and obtained the recurrence

$$
\begin{equation*}
S_{n+1}=(2 n+1) S_{n}-(n)_{2}\left\{S_{n-1}+S_{n-2}\right\}+\frac{(n)_{3}}{2} S_{n-3} \tag{2}
\end{equation*}
$$

where for brevity we write $S_{n}=S_{n}(2)$ and $(n)_{i}=n(n-1) \cdots(n-j+1)$.
Here we continue this problem but note that it is convenient to replace (1) by the more general

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j}=r_{i} \quad(1 \leq i \leq n) \tag{3}
\end{equation*}
$$

where the r_{i} are arbitrary non-negative integers.
Let $S\left(r_{1}, \cdots, r_{n}\right)$ denote the number of $n \times n$ symmetric integral matrices ($a_{i i}$) satisfying (3). It is immediate that $S\left(r_{1}, \cdots, r_{n}\right)$ is symmetric in the variables r_{i}, and it is not difficult to show that $S\left(r_{1}, \cdots, r_{n}\right)$ is the coefficient of $x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}$ in the expansion of

$$
\begin{equation*}
\prod_{i=1}^{n}\left(1-x_{i}\right)^{-1} \prod_{i<i}\left(1-x_{i} x_{i}\right)^{-1} \tag{4}
\end{equation*}
$$

which we denote by $G\left(x_{1}, \cdots, x_{n}\right)$.
Writing (4) in the form

$$
\left(1-x_{1}\right) G\left(x_{1}, \cdots, x_{n}\right)=G\left(x_{2}, \cdots, x_{n}\right) \prod_{i=2}^{n}\left(1-x_{1} x_{j}\right)^{-1}
$$

we obtain the recurrence
(5) $S\left(k_{1}+1, k_{2}, \cdots, k_{n}\right)=S\left(k_{1}, k_{2}, \cdots k_{n}\right)+\Sigma S\left(k_{2}-j_{2}, \cdots, k_{n}-j_{n}\right)$,
where the sum extends over all $(n-1)$-tuples (j_{2}, \cdots, j_{n}) of non-negative integers satisfying $j_{2}+\cdots+j_{n}=k_{1}+1$.

Received March 23, 1968. Supported in part by National Science Foundation grant GP-6382.

