SOME REMARKS ON THE ENUMERATION OF SYMMETRIC MATRICES

By D. P. Roselle

Professor Carlitz [1] has studied the number, $S_n(r)$, of $n \times n$ symmetric integral matrices (a_{ij}) satisfying

(1)
$$\sum_{j=1}^{n} a_{ij} = r \qquad (1 < i < n).$$

He evaluated $S_n(1)$ and $S_n(r)$ for $1 \leq n \leq 4$.

H. Gupta [2] has considered the numbers $S_n(2)$ and obtained the recurrence

(2)
$$S_{n+1} = (2n+1)S_n - (n)_2 \{S_{n-1} + S_{n-2}\} + \frac{(n)_3}{2} S_{n-3},$$

where for brevity we write $S_n = S_n(2)$ and $(n)_j = n(n-1) \cdots (n-j+1)$.

Here we continue this problem but note that it is convenient to replace (1) by the more general

(3)
$$\sum_{j=1}^{n} a_{ij} = r_i \qquad (1 \le i \le n)$$

where the r_i are arbitrary non-negative integers.

Let $S(r_1, \dots, r_n)$ denote the number of $n \times n$ symmetric integral matrices (a_{ij}) satisfying (3). It is immediate that $S(r_1, \dots, r_n)$ is symmetric in the variables r_i , and it is not difficult to show that $S(r_1, \dots, r_n)$ is the coefficient of $x_1^{r_1} \cdots x_n^{r_n}$ in the expansion of

(4)
$$\prod_{i=1}^{n} (1-x_i)^{-1} \prod_{i< i} (1-x_i x_i)^{-1}$$

which we denote by $G(x_1, \cdots, x_n)$.

Writing (4) in the form

$$(1 - x_1)G(x_1, \dots, x_n) = G(x_2, \dots, x_n) \prod_{j=2}^n (1 - x_1x_j)^{-1},$$

we obtain the recurrence

(5)
$$S(k_1 + 1, k_2, \dots, k_n) = S(k_1, k_2, \dots, k_n) + \Sigma S(k_2 - j_2, \dots, k_n - j_n),$$

where the sum extends over all (n - 1)-tuples (j_2, \dots, j_n) of non-negative integers satisfying $j_2 + \dots + j_n = k_1 + 1$.

Received March 23, 1968. Supported in part by National Science Foundation grant GP-6382.