ENUMERATION OF SYMMETRIC MATRICES

By Hansraj Gupta

1. Introduction. Let $H(n, r)$ denote the number of $n \times n$ matrices [$a_{i t}$] where the $a_{i i}$ are non-negative integers that satisfy

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j}=r=\sum_{i=1}^{n} a_{i j}, \quad 1 \leq i, \quad j \leq n . \tag{1.1}
\end{equation*}
$$

Anand, Dumir and Gupta [1] conjectured that for a given n and any r,

$$
\begin{equation*}
H(n, r)=\sum_{t=0}^{\substack{n-1 \\ 2}} c_{t}\binom{r+n+t-1}{n+2 t-1}, \tag{1.2}
\end{equation*}
$$

where the c_{t} depend on n alone. This would imply that

$$
\begin{equation*}
\sum_{r=0}^{\infty} H(n, r) x^{r}=(1-x)^{-(n-1)^{2}-1} \psi(x) \tag{1.3}
\end{equation*}
$$

where $\psi(x)$ is a symmetric polynomial in x of degree $(n-1)(n-2)$. It appears that the coefficients in $\psi(x)$ are positive integers. In particular, we have

$$
\begin{aligned}
& \sum_{r=0}^{\infty} H(1, r) x^{r}=(1-x)^{-1}, \\
& \sum_{r=0}^{\infty} H(2, r) x^{r}=(1-x)^{-2}, \\
& \sum_{r=0}^{\infty} H(3, r) x^{r}=(1-x)^{-5}\left(1+x+x^{2}\right)
\end{aligned}
$$

and probably

$$
\sum_{r=0}^{\infty} H(4, r) x^{r}=(1-x)^{-10}\left(1+14 x+87 x^{2}+148 x^{3}+87 x^{4}+14 x^{5}+x^{6}\right) .
$$

Carlitz [2] has considered the analogous problem for symmetric matrices. Here, we shall be concerned with the case $r=2$, not considered by Carlitz.
2. Let $S(n)$ denote the number of $n \times n$ symmetric matrices $\left[a_{i i}\right.$], where the $a_{i j}$ satisfy

$$
a_{i i}=a_{i i}=0,1 \text { or } 2 ; \quad 1 \leq i, j \leq n ;
$$

and

