SOME TOPICS IN THE THEORY OF RECURRENT MARKOV PROCESSES

BY RICHARD ISAAC

1. Summary. A recurrent Markov process $\{X_n, n \ge 0\}$ will be a Markov process with σ -finite stationary measure π , given stationary transition probability functions defined on (Ω, Σ) and satisfying one of the following successively stronger conditions:

Condition (A): Q(x, E) = 1 a.e. (π) on E. Condition (B): Q(x, E) = 1 a.e. (π) on Ω , if $\pi(E) > 0$. Condition (C): Q(x, E) = 1 for all $x \in \Omega$, if $\pi(E) > 0$, where $Q(x, E) = P(X_n \in E$ for infinitely many $n \ge 0 | X_0 = x)$.

All sets discussed are measurable with respect to some σ -field clear from the context. $P(\cdot | \cdot)$ is conditional probability.

§§3, 4, and 5 of this article are essentially independent of each other. In §3 the investigation centers on a duality between the stochastically closed sets of a recurrent process and the invariant sets in the representation of the process on bilateral sequence space. The discussion is closely related to Theorem 2 of [12]. §4 contains a brief discussion of the concept of uniform invariance. The principal results of the paper are, perhaps, contained in §§5 and 6. Here we investigate the ratios of transition probabilities

(1.1)
$$\frac{\sum_{k=1}^{n} P^{k}(x, E)}{\sum_{k=1}^{n} P^{k}(y, F)}.$$

Under condition (C), it is known that the limit of (1.1) exists on the complement of a null set for each fixed E and F with $0 < \pi(F) < \infty$ [15]. In [13] it was shown that this null set cannot in general be taken fixed, independent of Eand F. The idea of normality for processes is introduced here, and Theorem 7 uses this concept to get information about the convergence of (1.1) for various choices of x, y, E and F. §6 presents applications of the results of §5; we show that the limit of (1.1) exists for all x and y and all E and F, $0 < \pi(F) < \infty$ when the Markov process is obtained by taking sums of independent, identically distributed random variables, where the common distribution function belongs to a large class. Finally, we mention a few interesting open problems in §7.

General recurrent Markov processes have been dealt with, for instance, in [6], [7], [9], [10]–[13] where other references are given.

Received May 8, 1967; in revised form November 22, 1967. Partially supported by NSF grant GP-3819. Also supported by AFOSR grant No. 396-63 to Cornell University.