LEBESGUE DECOMPOSITION AND WEAKLY BOREL MEASURES

By Norman Y. Luther

Introduction. We prove in $\S 1$ a slight extension of the form of the Lebesgue Decomposition Theorem given by [6, Theorem 2.1]. We apply it to the study of regular and anti-regular weakly Borel and weakly Baire measures in §2 where these terms are defined. In $\S 3$ and $\S 4$ we apply it to the decomposition of weakly Borel and weakly Baire measures into regular and anti-regular parts. For example, we show (Theorem 3.6) that every σ-finite weakly Borel measure can be uniquely represented as the sum of a regular and an anti-regular weakly Borel measure. Finally, in $\S 5$ we introduce a slightly weaker form of antiregularity and use it to investigate a similar type of decomposition.

1. Lebesgue decomposition. Let X be a set, \mathcal{S} be a σ-ring of subsets of X, and μ, ν be measures on $\mathcal{S} . \nu$ is absolutely continuous with respect to μ, denoted $\nu \ll \mu$, if $\nu(E)=0$ whenever $E \varepsilon$ S and $\mu(E)=0$ [4; 124]. Following [6], we say that ν is S-singular with respect to μ, denoted $\nu S \mu$, if for each $E \varepsilon S$ there is a set $F \varepsilon S$ such that $F \subset E, \nu(F)=\nu(E)$, and $\mu(F)=0$. A set $A \subset X$ is said to be locally measurable if $A \cap E \varepsilon S$ for every $E \varepsilon S[1 ; 35]$. As is customary [4; 126], we say that ν is singular with respect to μ, denoted $\nu \perp \mu$, if there is a locally measurable set A such that $\nu(E \cap A)=0=\mu(E-A)$ for every $E \varepsilon S$.

It is easy to see that although singularity is a symmetric relation, S-singularity does not possess this property. Moreover, clearly $\nu \perp \mu$ implies that $\nu S \mu$ and $\mu S \nu$. However, the converse does not hold. This is shown in [6] which also contains the following easily verified properties of S-singularity that we shall need.
I. $\nu S \nu$ if, and only if, $\nu=0$.
II. If $\nu S \mu$ and $\lambda \ll \mu$, then $\nu S \lambda$.
III. If $\nu S \mu_{1}$ and $\nu S \mu_{2}$, then $\nu S\left(\mu_{1}+\mu_{2}\right)$.
IV. If $\nu_{1} S \mu$ and $\nu_{2} S \mu$, then $\left(\nu_{1}+\nu_{2}\right) S \mu$.
V. If $\nu \leq \mu+\lambda$ and $\nu S \lambda$, then $\nu \leq \mu$.

The following slight extension of [6, Theorem 2.1] will be basic throughout this paper.

Theorem 1.1 Let μ and ν be measures on a σ-ring S. Then there exists a unique decomposition $\nu=\nu_{1}+\nu_{2}$ of ν into the sum of measures ν_{1}, ν_{2} on S such that $\nu_{1} \ll$ $\mu, \nu_{2} S \mu$, and $\nu_{1} S \nu_{2}$.

Remark. Note that $\nu_{2} S \nu_{1}$ by Property II.
Received April 28, 1967; in revised form July 27, 1967.

