NORMAL FORMS OF LOCAL DIFFEOMORPHISMS ON THE REAL LINE

By Kuo-Tsai Chen

Let R be the real line with the coordinate x. By a local C^r diffeomorphism on R, we mean a C^r homeomorphism T from a neighborhood of the origin 0 onto another leaving 0 fixed.

MAIN THEOREM. Let T be a C^{*} local diffeomorphism on R. If T is orientation preserving (or reversing), and if the power series expansion of T(x) is not equal to x (or if T is not formally equivalent to a reflection about 0), then given any $r < \infty$, there exists a C' local diffeomorphism σ_1 on R such that $T_1 = \sigma_1^{-1}T\sigma_1$ is in one of the following normal forms:

(i) $T_1(x) = \lambda x, |\lambda| \neq 1, \lambda > 0 \text{ (or } < 0);$ (ii) $T_1(x) = x + (\pm x)^{\nu+1} + cx^{2\nu+1} \text{ (or } -x \pm x^{\nu+1} + cx^{2\nu+1})$

where c is a real number, and v is a positive (or positive even) integer.

COROLLARY. If T is an orientation preserving analytic local diffeomorphism on R, then, given any $r < \infty$, there exists a C' diffeomorphism σ_1 on R such that $T_1 = \sigma_1^{-1}T \sigma_1$ is in one of the following two normal forms:

(i') $T_1(x) = \lambda x, \lambda > 0;$

(ii)
$$T_1(x) = x + (\pm x)^{\nu+1} + cx^{2\nu+1}, \nu > 0.$$

It is known that if $T(x) = \lambda x + o(|x|), |\lambda| \neq 1$, then *T* can be brought to the normal form (i). See [6] and, for earlier results on analytic cases, p. 272 [3]. It remains to establish the normal form (ii). The proof is divided into two steps, namely Theorem 1 and Theorems 2, 2', in the sequel.

The technique of estimates in the proof of Theorem 1 is a modification of that of Sternberg's [6] and is also influenced by Hartman's work [3]. The method used in this paper can be generalized and applied to other situations. See [2].

We shall write D = d/dx and, for any real valued function f defined on $U \subset R$,

$$||f||_U = \sup \{|f(x)|: x \in U\}.$$

THEOREM 1. Let l be a positive number and r, ν positive integers such that $l > \nu + 1$ and $r > l + \nu$. Let T and T_1 be C^{r+1} local diffeomorphisms on R such that

$$T(x) = x + h_{\nu} x^{\nu+1} + o(|x|^{\nu+1}), \qquad h_{\nu} \neq 0,$$

Received December 29, 1966. This work was supported in part by a National Science Foundation grant.