INTERPOLATION IN W*-ALGEBRAS

By Charles A. Akemann

Introduction. This paper continues the author's effort [1], [2] to extend known results about abelian C^* -algebras to the non-abelian case. The main result is Theorem 2.3 which states that if A is a W*-algebra, A_0 a norm closed two-sided ideal containing a family $\{p_{\alpha}\}$ of orthogonal projections such that $||a - (\sum_{\alpha \in K} p_{\alpha})a(\sum_{\alpha \in K} p_{\alpha})|| \to 0$ for all $a \in A_0$ as K runs over the finite subsets of I directed by inclusion, X a Banach space, and $T: X \to A$ a bounded linear map with $T(X) + A_0 = A$; then there exists a finite set $K \subset I$ such that if $q = \sum_{\alpha \notin K} p_{\alpha}$, then qAq = qT(X)q.

This result extends (and actually improves) the prototype result of Bade [3] in which $A = l_{\infty}$ and $A_0 = c_0$. The technique of proof is based on [3]. In the last section we explain how some other results of [3] can be improved. Several corollaries and related results are included in sections three and four.

In §5 we characterize approximate identities in a C^* -algebra to give an alternate formulation of the main result. This characterization also is the exact analog of well-known results about continuous functions (the abelian case).

The author wishes to thank Professor S. Sakai and the referee for valuable suggestions.

1. Preliminaries. Let A be a W*-algebra and $A_0 \subset A$ a norm closed, twosided ideal. Define $A_1^* = A_0^\circ = \{f \in A^* : f(a) = 0 \text{ for all } a \in A_0\}$. Since A_0 is an ideal, A_1^* is invariant (i.e. if $f \epsilon A_1^*$ and $a \epsilon A$, then the functional $R_a f[L_a f]$ defined by $R_a f(b) = f(ba)[L_a f(b) = f(ab)]$ also lies in A_1^* . Thus as in Theorem 1 of [12], $A_1^{*\circ}$ is a $\sigma(A^{**}, A^*)$ closed ideal of the W*-algebra [13; 1.73] A**. By Theorem 1.3 of [13, p. 2.3] there exists a central projection $z \in A^{**}$ such that $A_1^{*\diamond} = zA^{**}$. Further $A^{**} = zA^{**} \oplus (1 - z)A^{**}$, so $A^* = A_1^* \oplus A_0^*$, where $A_0^* = A_0^*$ $(1-z)A^{**^{\diamond}}$. Both A_1^* and A_2^* satisfy the following conditions by [13; 1.74] and general duality theory:

1.1 A_0^* and A_1^* are invariant and closed.

- 1.2 $A_1^{\circ} = A_0^{\circ}$. i.e. $f \in A_1^{*}$, $a \in A_0$ implies f(a) = 0. 1.3 A_0° is (isometrically isomorphic to) the Banach space dual of A_0 .
- 1.4 A_0^* and A_1^* are each generated by their positive elements as follows: Each $f \in A_0^*$ has a unique decomposition $f = f_1 + if_2$ where f_1 and f_2 are self-adjoint. $g \in A_0^*$ is self-adjoint, there exist unique positive functionals g_1 and g_2 such that $g = g_1 - g_2$ and $||g|| = ||g_1|| + ||g_2||$. Similarly for any invariant closed subspace of A^* .

Since $A^* = A_0^* \bigoplus A_1^*$, for each $f \in A^*$ there exist uniquely $f^0 \in A_0^*$ and $f^1 \in A_1^*$ Received April 21, 1967.