LATTICES OF SEQUENCE SPACES

By William Ruckle

1. Introduction. Let E be a Hausdorff linear topological space and X and Y linear subspaces of E upon which are defined locally convex topologies stronger than the topology induced by E. There is a natural way (Definition 2.5) to define locally convex topologies on the linear spaces $X+Y$ and $X \cap Y$. This paper discusses properties which are preserved by sum and intersection, in particular when E is the space ω of all scalar (real or complex) sequences with the topology of coordinatewise convergence.

The sequence whose i th term is x_{i} is denoted by (x_{i}) or simply x. The sequence with 1 in the n-th place and 0 's elsewhere is written e_{n}; the set $\left\{e_{1}, e_{2}, \cdots\right\}$ is written ε. The sequence spaces which are considered here are all assumed to contain the set ε and hence the set φ of all sequences which are zero except in a finite number of coordinates.
1.1 Definition. A sequence space X which contains φ is a K-space if it is a locally convex Hausdorff space on which the coordinate functionals defined by $E_{i}(x)=x_{i}$ are continuous. In other words the locally convex topology on X is stronger than the relative topology of X as a subspace of ω.

The set E_{1}, E_{2}, \cdots is denoted by \mathcal{E}^{\prime}.
A K-space X is an $F K$-space if it is an F-space (complete metric) as well. It is a $B K$-space if it is a Banach space.

The term K-space is used in [5] where such spaces are studied in detail; $F K$ spaces are treated in [12].

Six $B K$-spaces which are mentioned in the course of this paper are:
c_{0}, the space of sequences which converge to 0 ;
l, the space of absolutely convergent series;
$b v$, the space of all sequences x for which $\|x\|=\sum_{i=1}^{\infty}\left|x_{i+1}-x_{i}\right|+\left|\lim _{n} x_{n}\right|$ is finite;
$b v_{0}$, the closed linear span of ε in $b v$;
$b s$, the space of all sequences x for which $\|x\|=\sup _{n}\left|\sum_{i=1}^{n} x_{i}\right|$ is finite;
$c s$, the closed linear span of \mathcal{E} in $b s$.
These spaces are discussed in IV. 2 of [4].
2. Preliminary results on the sum and intersection of subspaces. If p is any seminorm defined on a subspace X of a linear space E, its domain can be ex-

Received April 17, 1967.

