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1. Introduction and statement of main results. Each ]c-dimensiomfl factor of
I is a cell provided that/c _< 2 or n _< 4. This fact is due to a combinatio
or results found in papers of Bing [1], Szumbarski [17], and Young [19]. Bing
states in [1] that as a consequence of Theorem 1 of [19], if one factor of I is
(n 1)-dimensional, then the other is an arc. Hence an (n 1)-dimensional
factor of I is a space X such that X I F. The problem that motivated
this paper was that of finding uncountably many solutions to the above equa-
tion, for n > 4. Having considered this problem we are led to the natural
counterpart for cells of the well-known theorem of Curtis and Andrews [6
(which states that the product of E modulo an arc and E is E ) for Euclideaa
spaces. Thus we have established the following"

THEOREM 1. I] A is an arc in the boundary o] the standard ,n-cell I, then
I’/A X I In+.
As a corollary we see that there are at least as many factors of I, n > 4,

as there are arcs in Sn- with non-homeomorphic complements. It is conjectured
that there are uncountably many such arcs, but it is not known if there are
infinitely many. Three are given for S in Artin-Fox [7].
To illustrate another application of Theorem 1, we give ar exmple of a non-

manifold X (cf. Glaser [8]) such that X X I 1 and X can be written either
as (1) the union of two 4-cells meeting in a. 3-cell or as (2) the union of two 4-
cells meeting in u 4-cell.
Poenaru [16] and Mazur [13] have given examples of combinatorial 4-mani-

folds different from I whose products with I are cells, and Curtis [5] and Glaser
[9] have given similar examples for n >_ 4. These methods are not directly
applicable to the problem above, since there are only countably many compact
combinatorial manifolds. Kwun and Raymond [11] have shown that the product
of I" modulo an arc in its interior and I is I. This technique will produce,
non-manifold (n 1)-dimensional factors of In, but in general the factors are
are not readily distinguishable.
The proof of Theorem 1 is long and involves the work of McCauley [14],,

Connell [4], and Curtis and Andrews [6] as well as some more recent developments,
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