REFLECTION LAWS OF HIGH ORDER ELLIPTIC DIFFERENTIAL EQUATIONS IN TWO INDEPENDENT VARIABLES WITH CONSTANT COEFFICIENTS AND UNEQUAL CHARACTERISTICS ACROSS ANALYTIC BOUNDARY CONDITIONS

By JAMES M. SLOSS

1. Introduction. The purpose of this paper is to study the reflection laws of solutions of elliptic differential equations of the form

(1.1)
$$L[u] = \sum_{k+j=2n} a_{kj} \frac{\partial^{2n} u}{\partial x^k \partial y^j} = 0, \quad a_{kj} \text{ real constants}$$

all of whose characteristics are distinct, across an analytic arc κ on which the solution satisfies n analytic linear differential boundary conditions

(1.2)
$$B^{l}[u] = \sum_{k+i=m} b^{l}_{ki}(z) \frac{\partial^{k+i}u}{\partial x^{k} \partial y^{i}}$$
$$= f^{l}(z), \qquad l = 1, 2, \cdots, n \quad \text{on} \quad \kappa$$

where *m* is the same for all $l, n - 1 \leq m < 2n$ and where $b_{k_i}^l(z)$ are analytic in a specific preassigned domain containing κ . We shall show that we get an explicit expression for the reflection across the analytic arc, provided an inequality depending on the $b_{k_i}^l$ is satisfied. Moreover, the domain into which we can reflect the solution can be expressed simply and explicitly in terms of (1) the arc, (2) the original region on which *u* is defined, and (3) the a_{ij} . Thus we have explicit reflection in the large. It is the use of complex variable methods that permits the simple determination of the region of reflection.

The equation (1.1) is a special case of the general class of elliptic equations that Garabedian considered in [2], however, his results are local and are not explicit.

In [4] the author has shown that is possible to reflect solutions of systems of the form

$$\Delta u + Au_x + Bu_y + Cu = 0,$$

 $u = 1 \times n$ vector A, B, C constant pairwise commutative matrices, across an analytic arc on which the solutions satisfy analytic boundary conditions. A special example is the constant coefficient metaharmonic equation

$$\Delta^n u + a_{n-1} \Delta^{n-1} u + \cdots + a_1 u = 0.$$

Received March 31, 1967. The author wishes to gratefully acknowledge support for this research by the National Aeronautics Space Administration NASA Grant NGR 05-010-008. Reproduction in whole or in part is permitted for any purpose of the United States Government.