ON BEST APPROXIMATIONS OF FUNCTIONS OF TWO VARIABLES

By David A. Sprecher

1. Introduction. The subject of this paper is best approximations to continuous functions of two variables with functions of one variable. Specifically, consider the linear space \mathfrak{C}_{2} of real valued continuous functions defined on the unit square in the real Euclidean plane; let \mathfrak{C} be the corresponding space of functions with domain $E=[0,1]$; mark by \mathcal{S} the subspace of \mathcal{C} of function $a(x)+b(y)$. Best approximations to members $f \in \mathfrak{C}_{2}$ are relative to the distance function

$$
\begin{equation*}
\mu(f)=\inf _{v \star s}\|f-g\| . \tag{1.1}
\end{equation*}
$$

Our objective is to present a new method for evaluating $\mu(f)$ for each $f \varepsilon \mathfrak{C}_{2}$, and for finding the corresponding members of S which yield this approximation, the main innovation being that the process by which this is accomplished involves only functions of either x or y. A different and beautiful treatment of these problems is contained in a paper of Diliberto and Straus [1]; relevant material may be found also in [2].
2. Statement of the results. Imagine a family of functions, $\mathfrak{g}=\left\{g_{\nu}\right\}, g \varepsilon \mathfrak{C}$, containing at least two non-parallel members; we assume that the index ν varies over some set A of real numbers. The oscillation of a function g_{v} is

$$
\omega\left(g_{\nu} \mid E\right)=\max _{E} g_{\nu}-\min _{E} g_{\nu} ;
$$

for each function $a \varepsilon \mathcal{C}$ we introduce the family

$$
\mathfrak{g}-a=\left\{g_{\nu}-a: g_{\nu} \varepsilon \mathfrak{g}\right\}
$$

and define the oscillation of $\mathfrak{g}-a$ to be

$$
\begin{equation*}
\omega(\mathfrak{g}-a \mid E)=\sup _{\nu \in A} \omega\left(g_{\nu}-a \mid E\right) \tag{2.2}
\end{equation*}
$$

The number

$$
\begin{equation*}
\omega(\mathfrak{g})=\inf _{a \varepsilon \mathrm{e}} \omega(\mathfrak{g}-a \mid E) \tag{2.3}
\end{equation*}
$$

is called the least oscillation of the family \mathfrak{g}; a function $\alpha \boldsymbol{\varepsilon} \mathcal{C}$ is a best ω-approximation to \mathfrak{g} if $\omega(\mathfrak{g})=\omega(\mathfrak{g}-\alpha \mid E)$.

With each function $f \varepsilon \mathfrak{C}_{2}$ we associate the family \mathfrak{f} whose members are defined
Received March 23, 1967. This research was supported by the National Science Foundation under Grant No. GP-4165.

