IDEAL CENTER OF A C*-ALGEBRA

By J. DIXMIER

Let A be a C^* -algebra, and X its structure space. For every topological space, we denote by $C^b(T)$ the C^* -algebra of all complex bounded continuous functions on T. If A has a unit, $C^b(X)$ is canonically isomorphic with the center of A ([1], III, §5). If A has no unit, this is no more true, and the situation is less clear: let \tilde{A} be the C^* -algebra deduced from A by adjunction of a unit, and let \tilde{X} be the structure space of \tilde{A} ; then X can be canonically identified with the complement in \tilde{X} of a closed point ω ; but, as observed in [1], there is no simple relation between $C^b(\tilde{X})$ and $C^b(X)$; for example, ω may be in the closure of every point in X (and in this case $C^b(\tilde{X})$ is reduced to the scalars) with $C^b(X)$ very large.

In this note, we shall prove that this difficulty can be circumvented by considering an extension A' of A different from \tilde{A} . This C*-algebra A' could be defined in an abstract way, but we prefer to realize it as a C*-subalgebra of the enveloping von Neumann algebra of A. An essential tool is the following recent result of Dauns and Hofmann ([1], III, 3.5, 3.9 and III, §5): let $y \in A$ and $h \in C^b(X)$; there exists an element y' in A such that $y' \mod I = h(I)$ ($y \mod I$) for every $I \in X$.

Notation. For every C^{*}-algebra A, we denote by E(A) (resp. P(A)) the set of all states (resp. pure states) of A, with the weak topology defined by A. We denote by \hat{A} the set of classes of non-zero irreducible representations of A, and by Prim (A) the structure space of A, both with the Jacobson topology. Every $\varphi \in E(A)$ defines canonically a Hilbert space H_{φ} , a unit vector ξ_{φ} of H_{φ} , and a representation π_{φ} of A in H_{φ} . Let B be the enveloping von Neumann algebra of A; since B can be canonically identified with the bidual of A, every continuous linear form on A has a canonical extension to B; so, if for example $\varphi \in E(A)$, we shall use the notation $\varphi(x)$ not only for elements x of A, but also for elements x of B. Every representation of A has a canonical extension to B which will be denoted by the same letter. If H is a Hilbert space, we denote by $\mathfrak{LC}(H)$ the C*-algebra of all compact operators in H; a C*-algebra isomorphic with $\mathfrak{LC}(H)$ for some H is said to be elementary. If T is a topological space, a point $x \in T$ is said to be separated if, for every point $x' \in T$ not in the closure of x, x and x' have disjoint neighborhoods.

Concerning all these notions, cf. for example [2].

1. LEMMA. Let A be a C^{*}-algebra, and B its enveloping von Neumann algebra. Let M be the set of all $x \in B$ such that $xA \subset A$, and N the set of all $y \in B$ such that the function $\varphi \mid \rightarrow \varphi(y)$ on E(A) is continuous. Then $M + M^* \subset N$.

Received March 23, 1967.