ON THE LOGARITHMIC CAPACITY AND CONFORMAL MAPPING

By CH. POMMERENKE

1. Results. Let cap E denote the logarithmic capacity of the compact plane set E.

THEOREM 1. Let $f(z) = z + a_0 + a_1 z^{-1} + \cdots$ be univalent in |z| > 1. If A is a closed set on the unit circle |z| = 1 then

$$(1.1) cap f(A) \ge (cap A)^2,$$

and this inequality is best possible.

Here we define f(A) as the set of all limit points of $f(\zeta)$ as $\zeta \to z$, $z \in A$. The extremal function is not essentially unique.

This inequality was proved by M. Schiffer [9; 432] for the case that A is an arc. His proof uses a variational method and does not carry over to the general case. Our proof will be based on an inequality of Golusin.

THEOREM 2. Let E_1 and E_2 be compact plane sets such that $E_1 \cup E_2$ is connected. Then

$$(1.2) cap (E_1 \cup E_2) \leq cap E_1 + cap E_2.$$

This inequality was proved by M. Schiffer [8], [9] under the further assumptions that the sets E_1 and E_2 are connected and that there is a closed Jordan curve J such that E_1 lies in the interior of J and E_2 in the exterior, except for the points $E_1 \cap E_2$ which lie on J. Obviously, (1.2) need not hold if $E_1 \cup E_2$ is not connected.

Corollary 1. Let E_k $(k = 1, 2, \cdots)$ be continua such that

$$E = \bigcup_{k} E_{k}$$

is a continuum. Then

$$(1.3) cap E \leq \sum_{k} cap E_{k}.$$

Corollary 2. If E is a continuum of linear measure l(E), then

$$(1.4) l(E) \ge 4 \operatorname{cap} E,$$

and this inequality is best possible.

This estimate was proved by M. Fekete [4] for the case that E is an arc.

2. The distortion of the logarithmic capacity. If F is a plane compactum and

Received February 27, 1967.