FRACTIONAL INTEGRALS AND HANKEL TRANSFORMS

By Kusum Soni

1. Introduction. The problem of determining all pairs of functions $f(t)$ and $g(t)$ in $L^{2}(0, \infty)$ such that, for some definite Hankel transformation
(i) $g(t)$ is the transform of $f(t)$,
(ii) both $f(t)$ and $g(t)$ vanish throughout a certain neighborhood of $t=0$, was formulated and partially solved by de Branges [1]. Using differential operators, he found a complete solution provided the Hankel transform is of order $\nu=0$. Rovnyak [8] then gave another solution by means of unitary transformation on $L_{+}^{2}(-\infty, \infty)$.

De Branges conjectured that similar results must hold for transforms of arbitrary order ν. Here we carry out such an extension using Rovnyak's technique when $\nu>0$. The results are summed up in two theorems.
2. Notation and basic definitions. We consider only those functions which belong to $L^{2}(0, \infty)$ and interpret the convergence of the integrals in the metric of L^{2}. Two functions are treated as identical if they differ only on a set of measure zero.

We use Tricomi's form of Hankel transform. Thus $g_{1}(t)$ is the Hankel transform of order ν of $f(t)$ if

$$
g_{1}(t)=\mathfrak{S}_{\nu}\{f(u) ; t\}=\int_{0}^{\infty} f(u) J_{\nu}[2 \sqrt{(u t)}] d u .
$$

This is different from the form used by de Branges and Rovnyak. However, a change from one form of Hankel transform into the other presents no difficulty especially when the functions are square integrable.
A_{ν} denotes the set of those functions $f(t)$ in $L^{2}(0, \infty)$ for which the function $g(t)=t^{\nu / 2} \mathfrak{S}_{\nu}\left\{u^{-\nu / 2} f(u) ; t\right\}, \nu>0$, also is in $L^{2}(0, \infty)$.

We observe that $f(t)$ is in A_{ν} if and only if $g(t)$ is so. From now on, we shall assume $f(t)$ and $g(t)$ related as above unless specified otherwise.
$L_{2}^{(\lambda)}$ is a subset of $L^{2}(0, \infty)$ defined by Erdélyi [2] as follows: If $f(t)$ is in $L^{2}(0, \infty)$ and its Mellin transform $f_{1}(\tau)$ is such that $\tau^{-\lambda} f_{1}(\tau)$ is in $L^{2}(-\infty, \infty)$, then $f(t)$ is in $L_{2}^{(\lambda<0)}$.
$L_{+}^{2}(-\infty, \infty)$ is the space of functions $F(z), z=x+i y$, which are analytic in $y>0$ and satisfy the condition

$$
\sup _{\nu>0}\left\{\int_{-\infty}^{\infty}|F(x+i y)|^{2} d x\right\}<\infty .
$$

Received February 24, 1967. Work supported in part by Atomic Energy Commission under grant No. (AT(45-1)-1947 to Oregon State University.

