ON THE EXISTENCE OF CERTAIN DISJOINT ARCS IN GRAPHS

By Mark E. Watkins

1. Introduction. When is it possible for a communications network to support simultaneously any set of n two-way conversations (involving $2 n$ distinct parties), the lines being routed in such a way that no two of them intersect? Stated in terms of the theory of graphs the question becomes one of determining for each integer $n \geq 2$ when a finite undirected graph G with vertex set $V(G)$ satisfies the condition:
$\mathcal{Q}_{n}:|V(G)| \geq 2 n$, and given $2 n$ distinct vertices $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n} \varepsilon V(G)$, there exist n disjoint arcs $P_{i}\left[a_{i}, b_{i}\right],(i=1, \cdots, n)$, in G.

It is the purpose of this article to present some necessary conditions and some sufficient conditions for G to satisfy \mathcal{Q}_{n}. The special cases where $n=2$ and $n=3$ are investigated somewhat more fully.
2. Background and prerequisites. With minor exceptions, the language of this paper is that of O . Ore [8]. G will always denote a finite, undirected, connected graph without loops or multiple edges. Its vertex set will be denoted by $V(G)$, or simply by V.

The complete graph on m vertices will be denoted by K_{m}. The vertexconnectivity of G, denoted by $\lambda=\lambda(G)$, is defined as follows: $\lambda\left(K_{m}\right)=m-1$ for $m \geq 2$; otherwise $\lambda(G)$ is the number of vertices in a smallest separating set of G.

A family of arcs in G is said to be openly disjoint if the arcs in the family are pairwise disjoint except at common endpoints, if any. If X and Y are disjoint subsets of $V(G)$, an $X Y$-arc P has one end-point in each of X and Y and contains no other vertices in $X \cup Y$.

For each positive integer n, consider the condition
\mathscr{D}_{n} : If X and Y are disjoint, non-empty subsets of $V(G)$, and μ and v are functions from X and Y, respectively, into the positive integers such that

$$
\sum_{x \in X} \mu(x)=n=\sum_{y \in Y} v(y),
$$

then G contains an openly disjoint family of $n X Y$-arcs such that each vertex $x \varepsilon X$ is an end-point of $\mu(x)$ of these arcs and each vertex $y \varepsilon Y$ is an end-point of $v(y)$ of these arcs.

This formulation of \mathscr{D}_{n} is due to G. A. Dirac [6]. The same reference contains the following result:
Theorem 1. If $\lambda(G) \geq n$, then G satisfies \mathscr{D}_{n}.

Received February 3, 1967; in revised form January 24, 1968.

