ON COMPLETING THE VON NEUMANN ALMOST PERIODIC FUNCTIONS

BY HENRY W. DAVIS

1. Introduction and history. Besicovitch [1] showed that the space of Bohr almost periodic functions could be completed by closing it with respect to the norm

$$||f||_{B^p} = \overline{\lim_{T\to\infty}} \left[\frac{1}{2T} \int_{-T}^{T} |f(x)|^p dx \right]^{1/p}, \qquad p \ge 1.$$

In the resulting function spaces $\{B^{p} - AP\}$ one identifies functions whose "distance" from one another is zero. The members of $\{B^{p} - AP\}$ have Fourier series and the spaces $\{B^{p} - AP\}$ closely resemble the more familiar L^{p} -spaces. In fact, Følner [6] has shown that the normed linear spaces $\{\{B^{n} - AP\}, || ||_{B^{p}}\}$ and $(L^{p}(\bar{R}), || ||_{p})$ are naturally isomorphic and isometric, where \bar{R} is the Bohr compactification of the real line.

Let G be a locally compact T_0 -topological group (= LC group) and $\alpha(G)$ the space of continuous complex-valued von Neumann almost periodic functions on G. It is natural to ask whether or not $\alpha(G)$ can be completed in a fashion which generalizes, or is at least analogous to, the Besicovitch procedure. Other authors have considered this question. In 1957, Følner [7] showed that if Gis discrete, one may define a norm $|| \quad ||_{B_P}^F$ on the set of all complex-valued functions on G such that the closure of $\alpha(G)$ with respect to $|| \quad ||_{B_P}^F$ is complete, $p \geq 1$. The resulting space of functions is naturally isomorphic and isometric to the space $L^p(\tilde{G})$, where \tilde{G} is the Bohr compactification of G. Unfortunately, however, the original Besicovitch spaces cannot be realized via the Følner procedure. Also the Følner norm $|| \quad ||_{B_P}^F$ is defined through a quite complicated limiting process.

In 1958 Hirschfeld [10] considered LC groups G which have "left sampler families" $\{U_i\}_{i\in\mathbb{R}}$ (cf., [13]). Roughly, these are families of open bounded (i.e., each \overline{U}_i is compact) subsets of G satisfying enough conditions to insure that for all $f \in \alpha(G)$

$$Mf = \lim_{\iota \to \infty} \frac{1}{\mu(U_{\iota})} \int_{U_{\iota}} f \, d\mu.$$

Here Mf denotes the mean value of f and μ is left Haar measure. One then closes $\alpha(G)$ with respect to the norm

$$||f||_{B^p}^{H} = \overline{\lim_{t\to\infty}} \left[\frac{1}{\mu(U_t)} \int_{U_t} |f|^p d\mu \right]^{1/p} \qquad p \ge 1.$$

Received January 11, 1967. This work was supported by the project Special Research in Numerical Analysis for the Army Research Office, Durham, Contract Number DA-31-124-AROD-13, at Duke University.