
TOPOLOGIES ON QUOTIENT FIELDS

BY ELLEN CORREL

Let A be a principal ideal domain, P a representative system of prime elements
of A, K the quotient field of A. Our purpose is to prove that if (K, 5) is a
Hausdorff indiscrete (i.e., not discrete) topological field for which the open
A-submodules of K form a fundamental system of neighborhoods of zero,
then 3 is the supremum of a family of p-adic toplogies.
For each nonzero x K there exist a unique family (v,(x)),,p of integers,

all but finitely many of which are zero, and a unique unit u of A such that

x u IX
pep

For each p P, the function v (defined also at zero by v(0) -t-) is, of
course, the familiar p-adic valuation on K, and if

V,.., [x . K" v,(x) >_. n},

then (V,.,),>_o is a fundamental system of neighborhoods of zero for the p-
adic topology 5 on K; this topology is the topology defined by the nonarchi-
medean absolute value I, where Ixl, 2-(). Clearly each V,., is an open
A-submodule of K for 5 Hence if 5 is the supremum of a family of p-adic
topologies on K, then (K, 5) is an indiscrete Hausdorff topological field for
which the open A-submodules form a fundamental system of neighborhoods
of zero.

1. Submodules of the quotient field. Throughout, G is a nonzero submodule
of the A-module K. Consequently G A is a nonzero ideal of A, and
therefore there is a unique generator ao of the ideal G ( A that is the product
of elements of P.

LEMMA 1. I] a, b, c A, i] a G and abc-1 G, and i]b and c are relatively prime,
then ac-1 G.

Proo]. There exist x, y A such that xb - yc 1. Hence

ac- (xb yc)ac- xabc- ya
belongs to G.

LEMMA 2. I] a, b, c A, i] ab- G and ac- G, and i] b and c are relatively
prime, then a(bc)- G.
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