A HOMOLOGY TRANSGRESSION THEOREM

BY ALLAN CLARK

In this note we prove a homology transgression theorem which is dual to the well-known cohomology transgression theorem of Kudo [4]. A similar theorem has been proved by Dyer and Lashof [2, Theorem 4.7] under very strong hypotheses of homotopy commutativity.

We shall assume throughout that X is a pathwise connected and simply connected H-space with homology of finite type. ΠX will denote the space of paths on X beginning at the base point e (which we choose to be the unit of the H-space product on X), and ΩX will denote the space of loops on X based at e. Then ΩX is the fiber of the path space fibering $\pi : \Pi X \to X$ which sends each path $\lambda : [0, 1] \to X$ into its terminal point $\lambda(1) = \pi(\lambda)$.

 $\{E^r(\pi; Z_p)\}$ will denote the Serre spectral sequence in homology mod p (a prime) of the fibering π . Under the product induced by the H-space structure of X, π is a multiplicative fibering, and therefore $\{E^r(\pi; Z_p)\}$ is a spectral sequence of Hopf algebras over Z_p . We recall that $E^2_{p,q}(\pi; Z_p) \approx H_p(X; Z_p) \otimes$ $H_{\mathfrak{a}}(\Omega X; \mathbb{Z}_p)$ and remark that this isomorphism is as Hopf algebras. $\{u \otimes v\}$ in various elements of the spectral sequence will denote the appropriate iterated homology class of $u \otimes v \in E^2(\pi; Z_p)$ where $u \in H_*(X; (X; Z_p))$ and $v \in H_*(\Omega X; Z_p)$.

THEOREM 1. If $x \in H_{2m}(X; Z_p)$ transgresses to $y \in H_{2m-1}(\Omega X; Z_p)$, then

1) $x^{p} \in H_{2mp}(X; Z_{p})$ transgresses to $y' \in H_{2mp-1}(\Omega X; Z_{p});$ 2) $\beta x^{p} \in H_{2mp-1}(X; Z_{p})$ transgresses to $w \in H_{2mp-2}(\Omega X; Z_{p});$ 3) $d^{2m(p-1)}\{x^{p-1} \otimes y\} = \{1 \otimes (\beta y' + w)\} \in E_{0,2mp-2}^{2m(p-1)}(\pi; Z_{p}).$

(Here β denotes the mod p homology Bockstein operator.)

1. The cobar construction. Since the main part of our proof of Theorem 1 involves computations in the cobar construction of a mod p chain complex for X, we recall the cobar construction as described by Adams.

Let K be a commutative ring with unit and let \otimes denote \otimes_{κ} . Let C denote a connected differential graded K-coalgebra. This means:

1) C is a differential graded K-module in which $C_0 \approx K$ and the differential $d_1: C_1 \to C_0$ is zero. Then as a differential graded K-module $C \approx \overline{C} \oplus K$ where $C_n = C_n$ for n > 0 and $\overline{C}_0 = 0$.

2) C is a K-coalgebra with associative coproduct $\Delta: C \to C \otimes C$ which is a morphism of differential graded K-coalgebras.

3) The augmentation $\epsilon: C \to K$ (which coincides with the projection $\overline{C} \oplus$

Received January 26, 1967. The author was supported in part through National Science Foundation grants through Brown University and the Institute for Advanced Study.