SEMI-DENSE CLOSURE OF SYSTEMS OF FUNCTIONS

By Philip J. Davis

1. Introduction. A set of elements $\left\{x_{\alpha}\right\}$ of a normed linear space X is called closed if any element of the space X can be approximated as closely as desired by finite linear combinations of elements of the set. For example, the Weierstrass Approximation Theorem tells us that the powers 1, x, x^{2}, \cdots are closed in the normed linear space $C[a, b],\|f\|=\max _{a \leq x \leq b}|f(x)|,-\infty<a<b<\infty$. Some sets are so plentifully provided with elements that any infinite subset will still be closed. An example of this is the set of functions $x^{1 / n}(n=$ $1,2, \cdots)$. By Müntz' Theorem, any infinite subset of these functions is closed in $L^{2}[0,1]$. A closed set with this property has been called "densely-closed" (dicht-abgeschlossen), see Kacmarz and Steinhaus [9; 53]. At the other end of the road, there are, of course, closed sets which cease to be closed as soon as a single element is omitted. Such sets are called minimally closed. For example, any closed orthonormal system in a Hilbert space is minimally closed.

The object of the present paper is to study a situation that lies in between: closed sets which remain closed after any finite number of elements have been discarded. Such a set will be called semi-densely closed. We shall give a sufficient condition for semi-dense closure as well as several specific examples and applications of the concept.
2. A sufficient condition for semi-dense closure. Let us recall that a set of polynomials $\left\{p_{n}\right\} n=0, \cdots$ is a basic set if every polynomial q has a unique representation as a finite combination of p 's:

$$
\begin{equation*}
q=\sum_{k=0}^{J(a)} c_{k} p_{k} \tag{2.1}
\end{equation*}
$$

The degree of p_{n} need not be n, but in many familiar instances it is in fact n. With every basic set of polynomials there can be associated a biorthonormal set of linear functionals $\left\{\mathscr{L}_{n}\right\}$:

$$
\begin{equation*}
\mathscr{L}_{m}\left(p_{n}\right)=\delta_{m n}, \tag{2.2}
\end{equation*}
$$

and a formal expansion of a function f in a so-called basic series

$$
\begin{equation*}
f \sim \sum_{k=0}^{\infty} \mathscr{L}_{k}(f) p_{k} . \tag{2.3}
\end{equation*}
$$

For any polynomial q, the basic series expansion
Received January 6, 1967. Results shown in this paper were obtained in the course of research sponsored by the National Science Foundation under grant NSF GP-4213.

