ERRATA

Robert L. Hemminger, The lexicographic product of graphs, vol. 33(1966), pp. 499-502. The Theorem as stated is incorrect. The correct statement is:

For graphs X and Y such that $Y \neq X^* \circ Y$ for some subgraph X^* of X with $|X^*| > 1$ we have $G(X \circ Y) = G(X) \circ G(Y)$ if and only if

- (1) Y is connected if $R \neq \Delta$.
- (2) Y' is connected if $S \neq \Delta$.
- (3) If Y has a set of vertex disjoint section graphs $\{Y_{\alpha}\}_{\alpha \in \Omega}$, $|\Omega| \geq 2$, such that $Y_{\alpha} \approx Y$ for all $\alpha \in \Omega \{1\}$, $1 \in \Omega$, $V(Y) = \bigcup_{\alpha \in \Omega} V(Y_{\alpha})$, and for α , $\beta \in \Omega$ either all or none of the possible edges between Y_{α} and Y_{β} exist in Y, then X does not contain a section graph T on $V(T) = \{x_{\alpha}\}_{\alpha \in \Omega}$ such that (a) $V(X, x_{\alpha}) V(T) = V(X, x_{\beta}) V(T)$ for all $\alpha, \beta \in \Omega$, (b) $[x_{\alpha}, x_{\beta}] \in E(X)$ if and only if $[y_{\alpha}, y_{\beta}] \in E(Y)$ for some $y_{\alpha} \in V(Y_{\alpha})$ and $y_{\beta} \in V(Y_{\beta})$, and (c) $[x_{1}, x_{\alpha}] \in E(X)$ for all $\alpha \in \Omega \{1\}$ or else for no $\alpha \in \Omega \{1\}$.

The proof is then as in the paper. The hypothesis that $Y \not\approx X^* \circ Y$ is needed in (2.7) of the proof to guarantee that $U_c \neq Y_c$ for some $c \in C_x$. Also Lemma (2.6) should be restated as: There is at most one $c \in C_x$ such that $U_c \neq Y_c$. The part of (2.6) left out here is covered by the change in (3c) in the theorem.

Sabidussi's theorem [2] is still an obvious special case. The correct necessary and sufficient conditions for the lexicographic case will be contained in a forthcoming paper of the author where necessary and sufficient conditions are given for the group of an X-join of graphs $\{Y_x\}_{x\in X}$ to be the group of "natural" automorphisms. See [1] for the definition of an X-join. The "natural" automorphisms are those obtained by a permutation of the Y_x , as determined by a permutation of the subscripts by an automorphism of X, followed by an arbitrary automorphism of each Y_x . If $Y_x = Y$ for each $x \in X$ then the X-join is the lexicographic product $X \circ Y$, and the group of "natural" automorphisms is the wreath product $G(X) \circ G(Y)$.

REFERENCES

- 1. G. Sabidussi, Graph derivatives, Math, Zeitschr., vol. 76(1961) pp. 385-401.
- 2. G. Sabidussi, The lexicographic product of graphs, this Journal, vol. 28(1961) pp. 573-578.
- H. H. Wicke and J. M. Worrell, Jr., Open continuous mappings of spaces having bases of countable order, vol. 34(1967), pp. 255-272.
- p. 256, replace lines 7 and 8 by "A base B is said to be monotonically complete if and only if the closures of the elements of every monotonic subcollection of B have a (non-empty) common part."