ARITHEMETIC FUNCTIONS IN AN UNUSUAL SETTING II

By L. Carlitz

Let F denote an arbitrary but fixed field. An arithmetic function is a mapping from the integers into F; usually the arguments are limited to positive or nonnegative integers. If f and g are two functions, the sum $h=f+g$ is defined by

$$
\begin{equation*}
h(n)=f(n)+g(n) . \tag{1}
\end{equation*}
$$

The writer [1] has defined the Lucas product $h=f * g$ by means of

$$
\begin{equation*}
h(n)=\sum_{a=0}^{n} * f(a) g(n-a), \tag{2}
\end{equation*}
$$

where the summation is restricted to such a that

$$
\begin{equation*}
p \nmid\binom{n}{a} \text {; } \tag{3}
\end{equation*}
$$

here p denotes a fixed prime.
We recall that (3) holds if and only if

$$
\begin{array}{ll}
n=n_{0}+n_{1} p+n_{2} p^{2}+\cdots & \left(0 \leq n_{i}<p\right), \\
a=a_{0}+a_{1} p+a_{2} p^{2}+\cdots & \left(0 \leq a_{i}<p\right),
\end{array}
$$

and

$$
\begin{equation*}
0 \leq a_{i} \leq n_{i} \quad(j=0,1,2, \cdots) \tag{4}
\end{equation*}
$$

The algebraic system based on (1) and (2) will be denoted by L_{p}. The object of this note is to point out the relationship of L_{p} to certain systems based on other definitions of product.

Consider functions that are now defined only on the positive integers. The sum will again be defined by (1). The unitary product is defined by means of

$$
\begin{equation*}
h(n)=\sum_{\substack{a b=n \\(a, b)=1}} f(a) g(b), \tag{5}
\end{equation*}
$$

where (a, b) denotes the greatest common divisor of a, b.
The unitary product was introduced by Vaidyanathaswamy [4] who used the term compounding; the present terminology was introduced by Eckford Cohen [2], [3]. The algebraic system based on (1) and (5) may be denoted by U_{2}.

We shall be interested in the subalgebra V_{2} consisting of functions f such that

$$
\begin{equation*}
f(n)=0 \quad(n \text { not squarefree }) \tag{6}
\end{equation*}
$$

We show that V_{2} and L_{2} are isomorphic.
Received September 7, 1967. Supported in part by NSF grant GP-5174.

