SIMILAR INVOLUTORY MATRICES MODULO R

By Joel V. Brawley, Jr.

1. Preliminaries. If A is an $n \times n$ matrix over a ring R with an identity, then A is called involutory if $A^{2}=I$ where I denoted the $n \times n$ identity matrix over R. Such involutory matrices while of interest in themselves have a practical application in the area of algebraic cryptography [6], [7], [8]. One characteristic of an involutory matrix is that it remains involutory under a similarity transformation; i.e., A is involutory if and only if $P^{-1} A P$ is involutory where P is any nonsingular matrix over R. Thus, in studying involutory matrices one is led to a study of the effect of similarity transformations on such matrices, and one question which arises is the following: What kind of canonical forms for involutory matrices can be obtained through similarity transformations? To be more specific we make the following definitions.

Definitions. A set C of $n \times n$ matrices is called a canonical set for the involutory matrices if each $n \times n$ involutory matrix is similar to one and only one matrix in C. For a fixed canonical set C and for an arbitrary involutory matrix A, that matrix in C to which A is similar will be called the canonical form of A (relative to C).

Usually, when one speaks of a canonical form, he means a matrix that is in some sense simpler than the original matrix. Therefore, in obtaining a canonical set C it is desired to have the member matrices as "simple" as possible. The question above is now rephrased as follows: What is a canonical set for the involutory matrices with the property that the members of the set are in some sense simple?

This question is easily answered when the ring R is a field F. Indeed, the set C may be taken as the Jordan canonical set. This Jordan set is shown by Hodges [5] to be

$$
C_{1}=\left\{\operatorname{diag}\left(I_{t},-I_{n-t}\right) \mid t=0,1,2, \cdots, n\right\}
$$

for fields not of characteristic 2 and

$$
C_{2}=\left\{\operatorname{diag}\left(I_{n-2 t}, Z_{1}, \cdots, Z_{t}\right) \mid t=0,1,2, \cdots\left[\frac{n}{2}\right]\right\}
$$

for fields of characteristic 2 . Here I_{k} denotes the $k \times k$ identity matrix, $Z_{i}=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ for $i=1,2, \cdots t$, and $[n / 2]$ is the greatest integer in $n / 2$. (Actually, Hodges' work refers to finite fields, but his arguments are valid for arbitrary fields.)

Received October 29, 1966.

