A SEQUENCE OF NUMBERS RELATED TO THE EXPONENTIAL FUNCTION

By F. T. HOWARD

1. Introduction. The Bernoulli numbers B_0 , B_1 , B_2 , ... are defined by

$$\frac{x}{e^x-1}=\sum_{s=0}^{\infty}B_s\frac{x^s}{s!}.$$

Properties of these numbers are well known [4]. Other generating functions of the type

(1.1)
$$\frac{x^n}{n!} \left(e^x - \sum_{r=0}^{n-1} \frac{x^r}{r!} \right)^{-1} = \frac{x^n}{n!} \left(\sum_{r=n}^{\infty} \frac{x^r}{r!} \right)^{-1}$$

have not been studied, although van der Pol in [5; 235] briefly discusses the numbers β_0 , β_1 , β_2 , \cdots defined by

$$\frac{x^{3}}{3!} \left(\sum_{r=3}^{\infty} \frac{(r-2)x^{r}}{r!} \right)^{-1} = \sum_{s=0}^{\infty} \beta_{s} \frac{x^{s}}{s!}.$$

When n = 1 in (1.1), we have the Bernoulli case. In this paper we shall examine the case n = 2.

We first define a polynomial $A_n(z)$ which is analogous to the Bernoulli polynomial. Put

(1.2)
$$\frac{x^2}{2} \frac{e^{xz}}{e^x - x - 1} = \sum_{s=0}^{\infty} A_s(z) \frac{x^s}{s!}.$$

If we define $A_{\mathfrak{s}}(0) = A_{\mathfrak{s}}$ ($\mathfrak{s} = 0, 1, \dots$), it follows from (1.2) that

(1.3)
$$A_n(z) = \sum_{s=0}^n \binom{n}{s} A_s z^{n-s}.$$

Since

(1.4)
$$\frac{\frac{x^2}{2}}{e^x - x - 1} = \sum_{s=0}^{\infty} A_s \frac{x^s}{s!},$$

we have $A_0 = 1$, and for n > 0

$$(1.5) \qquad \qquad \sum_{s=0}^{n} \binom{n+2}{s} A_{\bullet} = 0.$$

Using (1.5), we can easily compute the first few values of A_n . We have $A_0 = 1$, $A_1 = -\frac{1}{3}$, $A_2 = \frac{1}{18}$, $A_3 = \frac{1}{90}$, $A_4 = -\frac{1}{270}$, $A_5 = -\frac{5}{1134}$. A more extensive table of values is given at the end of the paper.

Received September 15, 1966. Supported by NSF grant GP-1593.