A SEQUENCE OF NUMBERS RELATED TO THE EXPONENTIAL
FUNCTION

By F. T. HowArp

1. Introduction. The Bernoulli numbers B, , By, B,, ... are defined by
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Properties of these numbers are well known [4]. Other generating functions
of the type
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have not been studied, although van der Pol in [5; 235] briefly discusses the
numbers 8, , 8, , Bz, - -+ defined by
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Whenn = 1in (1.1), we have the Bernoulli case. In this paper we shall examine
the case n = 2.

We first define a polynomial A4,(z) which is analogous to the Bernoulli poly-
nomial. Put
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If we define 4,(0) = 4, (s =0, 1, ---), it follows from (1.2) that
(1.3) A4, = > (Z)A,z"“.
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we have 4, = 1, and forn > 0
(1.5) > (” ': 2>A. = 0.
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Using (1.5), we can easily compute the first few values of 4, . We have
Ao=1 A = — 3,4, = 75, 45 = g5, Ay = — g}, 45 = — 1r5z- A more
extensive table of values is given at the end of the paper.
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