DOUBLY STOCHASTIC ASSOCIATED MATRICES

By MARVIN MARCUS AND MORRIS NEWMAN

Let A be an n-square complex matrix. A matrix K(A) whose entries are polynomials in the entries of A and which satisfies

(1)
$$K(AB) = K(A)K(B)$$

for all A and B is called an associated matrix [3;76]. The most familiar instances of associated matrices are $\Pi^{r}(A) = A \otimes \cdots \otimes A$, the r-th Kronecker power of A, $P_{r}(A)$, the r-th induced power matrix, and $C_{r}(A)$, the r-th compound of A. Associated matrices arise in a natural way as matrix representations of linear transformations on symmetry classes of tensors. However, here we shall give a direct matrix definition of a restricted class of associated matrices K(A) in terms of certain generalized submatrices of A.

Let G be a subgroup of order g of the symmetric group S, and let χ be a character on G of degree 1. If X is an r-square matrix then set

(2)
$$d_{\chi}^{g}(X) = \sum_{\sigma \in G} \chi(\sigma) \prod_{i=1}^{r} X_{i\sigma(i)} .$$

The function d_{χ}^{σ} is called a generalized matrix function [2]. Next, let $\Gamma_{r,n}$ denote the totality of n^{r} sequences $\omega = (\omega_{1}, \cdots, \omega_{r}), 1 \leq \omega_{i} \leq n$ and define an equivalence relation on $\Gamma_{r,n}$ by: $\omega \sim \beta$ if there exists a $\sigma \in G$ for which $\omega^{\sigma} = (\omega_{\sigma(1)}, \cdots, \omega_{\sigma(r)}) = \beta$. Let Δ be a system of distinct representatives with respect to this equivalence relation in $\Gamma_{r,n}$ so chosen that each element is first in its equivalence class in lexicographic order. Let $\overline{\Delta}$ be the subset of Δ for which

$$\sum_{\sigma \in G_{\omega}} \chi(\sigma) = \nu(\omega) \neq 0$$

where $G_{\omega} = \{\sigma \in G | \omega^{\sigma} = \omega\}$, i.e., G_{ω} is the stabilizer in G of ω . In other words, $\omega \in \overline{\Delta}$ if and only if the character χ is identically 1 on G_{ω} (so that $\nu(\omega)$ is the order of G_{ω}). For example, if $G = S_r$, $\chi = \epsilon$, then $\overline{\Delta}$ is the set of strictly increasing sequences ω of length $r, 1 \leq \omega_1 < \cdots < \omega_r \leq n$ and $\nu(\omega) = 1$. Again, if $G = S_r$ and $\chi \equiv 1$, then $\Delta = \overline{\Delta}$ is the set $G_{r,n}$ of all $\binom{n+r-1}{r}$ non-decreasing sequences of length r chosen from $1, \cdots, n$, and

(3)
$$\nu(\omega) = \prod_{i=1}^{n} m_i(\omega)!$$

Received June 20, 1966. The work of the first author was supported by the U.S. Air Force under grant AFOSR-698-65.