A CONSEQUENCE OF THE NON-EXISTENCE OF CERTAIN GENERALIZED POLYGONS

BY STANLEY E. PAYNE

Introduction. Let M be a collection of v points and v lines with S lines through each point, S points on each line, $S \ge 3$. An *n*-gon of M is a collection of n distinct points x_1, \dots, x_n and n distinct lines L_1, \dots, L_n of M such that $x_i \in L_i \cap L_{i+1}$ for $1 \le i \le n-1$, and $x_n \in L_n \cap L_1$. If K is the smallest positive integer n such that there is an n-gon of M, then M is said to be a $v \times v(K, S)$ configuration, and $v \ge \sum_{i=0}^{k-1} (S-1)^i$ [2]. If equality holds, M is said to be projective and is in the class of generalized K-gons for which Feit and Higman have shown that K = 3, 4, or 6 [1]. Our main result is the following consequence of the non-existence of a projective (5, S)-configuration:

THEOREM 1. Let S - 1 be a prime power and let F and F' be the fields with S - 1 and $(S - 1)^2$ elements, respectively, $F \subset F'$. Then there do not exist elements $e_1, \dots, e_s, e'_1, \dots, e'_s$ of F' with e_1, \dots, e_s distinct and such that all three of the following implications hold:

A. For a ε F', if $a(e_{i_1} - e_{i_1}) \varepsilon$ F and $a(e_{i_2} - e_{i_1}) \varepsilon$ F, then a = 0 or $t_1 = t_2$.

B. For a, $c \in F'$, if $ae_{i_1} - ce_{i_2} = (a - c)e_{i_3}$, $c(e'_{i_3} - e_{i_3}) \in F$, and $(a - c)(e'_{i_3} - e_{i_3}) \in F$, then either a = c = 0 or $t_1 = t_2 = t_3$.

C. For $a_i \in F'$, i = 1, 2, 3, 4, if $\sum_{i=1}^{4} a_i = 0$ and $a_i(e'_{t_i} - e_{t_i}) \in F$, then either $a_i = 0$ for all i or $t_1 = t_2 = t_3 = t_4$.

For $S \geq 4$ there is the

COROLLARY. Let ξ be a generator of the multiplicative group of F'. Then for i = 1, 2, 3, 4 there exist $a_i \in F'$ not all zero and distinct integers $t_i, 1 \leq t_i \leq S$ such that $\sum a_i = \sum a_i \xi^{i} = 0$, and such that $a_i \xi^{i} \in F$ for each i = 1, 2, 3, 4.

Preliminaries. Lines or points of M will be called *elements* of M. For elements T, T' of M put d(T, T') = 0 if T = T', d(T, T') = 1 if one of T, T' is on the other. If n is the smallest integer r such that there are elements T_1 , $T_2, \dots, T_r = T'$ with $d(T, T_1) = d(T_1, T_2) = \dots = d(T_{r-1}, T_r) = 1$, put d(T, T') = n. Then for projective M: we list the following relations for reference:

1) $d(T, T') \leq K$ for any elements T, T' of M.

2) If d(T, T') < K there is a unique sequence of elements determining d(T, T').

Received October 24, 1966