A CONSEQUENCE OF THE NON-EXISTENCE OF CERTAIN GENERALIZED POLYGONS

By Stanley E. Payne

Introduction. Let M be a collection of v points and v lines with S lines through each point, S points on each line, $S \geq 3$. An n-gon of M is a collection of n distinct points x_{1}, \cdots, x_{n} and n distinct lines L_{1}, \cdots, L_{n} of M such that $x_{i} \varepsilon L_{i} \cap L_{i+1}$ for $1 \leq i \leq n-1$, and $x_{n} \varepsilon L_{n} \cap L_{1}$. If K is the smallest positive integer n such that there is an n-gon of M, then M is said to be a $v \times v(K, S)$ configuration, and $v \geq \sum_{i=0}^{k-1}(S-1)^{i}$ [2]. If equality holds, M is said to be projective and is in the class of generalized K-gons for which Feit and Higman have shown that $K=3,4$, or $6[1]$. Our main result is the following consequence of the non-existence of a projective ($5, S$)-configuration:

Theorem 1. Let $S-1$ be a prime power and let F and F^{\prime} be the fields with $S-1$ and $(S-1)^{2}$ elements, respectively, $F \subset F^{\prime}$. Then there do not exist elements $e_{1}, \cdots, e_{S}, e_{1}^{\prime}, \cdots, e_{S}^{\prime}$ of F^{\prime} with e_{1}, \cdots, e_{S} distinct and such that all three of the following implications hold:
A. For $a \varepsilon F^{\prime}$, if $a\left(e_{t_{1}}^{\prime}-e_{t_{1}}\right) \varepsilon F$ and $a\left(e_{t_{2}}-e_{t_{1}}\right) \varepsilon F$, then $a=0$ or $t_{1}=t_{2}$.
B. For $a, c \in F^{\prime}$, if $a e_{t_{1}}-c e_{t_{2}}=(a-c) e_{t_{3}}, c\left(e_{t_{2}}^{\prime}-e_{t_{2}}\right) \varepsilon F$, and $(a-c)\left(e_{t_{3}}^{\prime}-e_{t_{3}}\right) \varepsilon F$, then either $a=c=0$ or $t_{1}=t_{2}=t_{3}$.
C. For $a_{i} \varepsilon F^{\prime}, i=1,2,3,4$, if $\sum_{i=1}^{4} a_{i}=0$ and $a_{i}\left(e_{t_{i}}^{\prime}-e_{t_{i}}\right) \varepsilon F$, then either $a_{i}=0$ for all i or $t_{1}=t_{2}=t_{3}=t_{4}$.

For $S \geq 4$ there is the
Corollary. Let ξ be a generator of the multiplicative group of F^{\prime}. Then for $i=1,2,3,4$ there exist $a_{i} \varepsilon F^{\prime}$ not all zero and distinct integers $t_{i}, 1 \leq t_{i} \leq S$ such that $\sum a_{i}=\sum a_{i} \xi^{t_{i}}=0$, and such that $a_{i} \xi^{t_{i}} \varepsilon F$ for each $i=1,2,3,4$.

Preliminaries. Lines or points of M will be called elements of M. For elements T, T^{\prime} of M put $d\left(T, T^{\prime}\right)=0$ if $T=T^{\prime}, d\left(T, T^{\prime}\right)=1$ if one of $T, T^{\prime \prime}$ is on the other. If n is the smallest integer r such that there are elements T_{1}, $T_{2}, \cdots, T_{r}=T^{\prime}$ with $d\left(T, T_{1}\right)=d\left(T_{1}, T_{2}\right)=\cdots=d\left(T_{r-1}, T_{r}\right)=1$, put $d\left(T, T^{\prime}\right)=n$. Then for projective M : we list the following relations for reference:

1) $d\left(T, T^{\prime}\right) \leq K$ for any elements T, T^{\prime} of M.
2) If $d\left(T, T^{\prime}\right)<K$ there is a unique sequence of elements determining $d\left(T, T^{\prime}\right)$.

Received October 24, 1966.

