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1. Introduction. In [3] Bing gave the first example of a point-like upper
semi-continuous decomposition G of E such that its decomposition space,
ES/G, is not homeomorphic to E. He showed that E/G was not E by proving
the non-existence of a homeomorphism between these spaces. In [5; 9] and
[3; 498] he asked if there were some topological property of E/G which would
distinguish it from ES. In [1], Armentrout announced that E/G has certain
points without small simply connected neighborhoods. In this paper we show
(Theorem 2) that each point of P(Ao) has no small neighborhood bounded by a

2-sphere (P is the projection map of E onto E/G, and Ao is the sum of the
non-degenerate elements of G). In [6] it was announced that E3/G has this
property, but the announcement was subsequently withdrawn. In the proof
we present here to show the non-existence of a small neighborhood bounded by
a 2-sphere, essential use is made of Bing’s paper [3]. Hence, while we do obtain
a topological property of E3/G which distinguishes it from ES, we do not obtain
an independent method of proving that ES/G is not Ea. In 6 we show that
each point of ES/G has an arbitrarily small neighborhood bounded by a 2-sphere
with one handle (the boundary of a solid torus).

2. Preliminaries. In 2 of [3] Bing uses A, A, A, Ai, (each letter
in a subscript is one of the integers 1, 2, 3, and 4) to define his decomposition
of E. Let B1 A,, B2 A;, let X denote a component of some
B (X is a homeomorphic image of A), and let X1, X2, X, and X4 denote the
components of B.+I contained in X. (See Figure 1.)

Let F and F, be the centers of X and X, respectively. (See 7 of [3].) Note
that F, a topological figure eight, consists of an upper loop F and a lower loop
F, Also, in 7 of [3], Bing defines Properties P and Q relative to the fixed
disks D and D We shall use Properties P and Q, but these properties will
be used here relative to various pairs of disks E1 and E.. That is, relative to
disks E and E. in E and a component X of B, we have the following
definitions.

Property P. A topological figure eight has Property P if it contains two
points x and y in opposite loops such that any arc from x to y in it intersects
both E and E.
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