SUBMERSIONS AND GEODESICS

By Barrett O'Neill

1. Introduction. For Riemannian manifolds M and B, a submersion $\pi: M \rightarrow B$ is a mapping onto B which has maximal rank and preserves lengths of horizontal tangent vectors to M [4]. (A tangent vector to M at p is horizontal if orthogonal to the fiber $\pi^{-1} \pi(p)$ through p, vertical if tangent to the fiber.) Submersions occur frequently in Riemannian geometry; many examples are considered in [3], [6], notably the projection $G \rightarrow G / H$ of a Riemannian homogeneous space. A submersion $\pi: M \rightarrow B$ is described infinitesimally by tensors T and A on M introduced in [6], where the relations between the curvatures of M, B, and the fibers $\pi^{-1}(b)$ are expressed in terms of these tensors.

Our aim here is to compare the geodesics of M and B, and to show how conjugacy and index on a geodesic in B derive from the geometry of M and the fibers. When M is complete, any geodesic segment β in B is the projection $\pi \circ \gamma$ of a horizontal geodesic segment γ in M. Our main result is a formula (Theorem 3) relating the index form on γ, with fibers as endmanifolds, to the fixed endpoint index form on $\beta=\pi \circ \gamma$. As a consequence we can identify conjugacy and index on β with conjugacy and index on γ-with fibers as endmanifolds at either one or both endpoints of γ. When only fixed endpoint conjugacy on γ is known we still obtain information about conjugacy on β (Theorem 5). Roughly speaking, if a conjugate point on γ does not project to a conjugate point on β (order of conjugacy, at least, need not be preserved) it is nevertheless responsible for a conjugate point occurring earlier on β. Finally we look at a special case which suggests how detailed information about M and the tensor A can be used to locate conjugate points in B.

For the curvature relations mentioned above we refer to [6], but we now summarize briefly the basic properties of the tensors T and A. Let $\mathfrak{K C}$ and \mathcal{V} denote the projections of each tangent space of M onto its (complementary) subspaces of horizontal and vertical vectors. Then for arbitrary vector fields E and F on $M, T_{E} F=\mathscr{H C} \nabla_{V_{E}}(\mathcal{V} F)+V \nabla_{V_{E}}(\mathcal{H} F)$. Thus T is one formulation of the second fundamental form of all fibers. For $A_{E} F$, simply exchange \mathfrak{H} and \mathcal{V} in the formula for $T_{E} F$. Subsequent computations make frequent use of the following properties of T and A : (1) T_{E} and A_{E} are, at each point, skew-symmetric linear operators on the tangent spaces of M; each sends horizontal vectors to vertical, and vertical to horizontal; (2) T is vertical, A horizontal, that is, $T_{E}=T_{V_{E}}$ and $A_{E}=A_{\text {se } E}$; (3) for vertical vector fields, $T_{V} W=T_{W} V$; for horizontal vector fields, $A_{X} Y=\frac{1}{2} \mathcal{V}[X, Y]=-A_{Y} X$. This last fact, proved in [6], shows that A is the integrability tensor of the horizontal distribution on M.

Received June 6, 1966. This work was supported by a National Science Foundation grant.

