ON THE GROUP OF CONFORMAL TRANSFORMATIONS OF A COMPACT RIEMANNIAN MANIFOLD. II

By Chuan-Chih Hsiung

1. Introduction. Let M^n be a connected Riemannian manifold of dimension n, and $C_0(M^n)$, $I_0(M^n)$ the largest connected groups of conformal transformations and isometries of M^n respectively. In a previous paper [2], the author established

THEOREM 1. Let R_{hijk} , $R_{ij}(h, i, j, k = 1, \dots, n)$ be respectively the Riemann and Ricci tensors of a compact Riemannian manifold $M^n(n > 2)$ with positive constant scalar curvature R, and suppose that

(1)
$$P^{p}Q^{a} = C = const.$$

(2)
$$C\left[\frac{2p}{P} + \frac{(n-1)q}{Q}\right] = \frac{2^{p}(p+q)R^{2(p+q-1)}}{n^{p+q-1}(n-1)^{p-1}},$$

where p, q are nonnegative integers and not both zero, and

$$(3) P = R^{hijk}R_{hijk}, Q = R^{ij}R_{ij}$$

If $C_0(M^n) \neq I_0(M^n)$, then M^n is isometric to a sphere.

It should be noted that when p = 0, q = 1, or p = 1, q = 0, Equation (2) is an identity, and for the first special case Theorem 1 is due to Lichnerowicz [3]. Furthermore, we still have the open question: When p = q = 0, is Theorem 1 still true?

On the other hand, Obata [4] obtained

THEOREM 2. Let $M^n (n \ge 2)$ be a complete Riemannian manifold with metric tensor g_{ii} , and ∇ the operator of covariant derivation of M^n . If M^n admits a nonconstant function ρ such that $\nabla_i \nabla_i \rho = -c^2 \rho g_{ii}$, where c is a positive constant, then M^n is isometric to an n-sphere of radius 1/c.

Very recently, by making use of Theorem 2, Yano [5] proved

THEOREM 3. Suppose that a compact orientable Riemannian manifold M^n (n > 2) with constant R admits an infinitesimal nonhomothetic conformal transformation v so that

(4)
$$L_{\nu}g_{ij} = 2\phi g_{ij}, \quad \phi \neq const.$$

where L_{\bullet} is the operator of the infinitesimal transformation v. If

$$\int_{M^n} T_{ij} \phi^i \phi^j \, dA_n \ge 0,$$

Received July 1, 1966. The research was partially supported by the National Science Foundation grant GP-4222.