OPERATOR ALGEBRAS GENERATED BY PROJECTIONS

By P. A. Fillmore and D. M. Topping

The purpose of this note is to prove that certain *-algebras of bounded linear operators on a complex Hilbert space are generated (as algebras) by their projections.

Let $\mathfrak{K C}$ be a Hilbert space, \mathbb{Q} a *-algebra of operators on \mathfrak{H}, and \mathfrak{T} the algebra of $n \times n$ matrices ($n \geq 2$) with entries from \mathbb{Q}. Assuming that the identity operator $I \varepsilon \mathbb{Q}$, and that \mathbb{Q} contains the positive square root of each of its positive operators, one can prove as follows that \mathfrak{I} is generated by its projections.

Recall first that any operator in \mathbb{Q} is a linear combination of unitary operators in $\mathbb{Q}[1 ; 4$, Proposition 3]. In fact, any operator in a $*$-algebra is a linear combination of self-adjoint contractions in that algebra, and if A is a self-adjoint contraction and $U=A+i\left(I-A^{2}\right)^{\frac{1}{2}}$, then U is unitary and $A=\frac{1}{2}\left(U+U^{*}\right)$.

Next we prove that any matrix $M_{i j}(A)$, with $A \varepsilon \mathbb{Q}$ in the (i, j) location and 0 elsewhere, is for $i \neq j$ a linear combination of projections. If $U \varepsilon \mathbb{Q}$ is unitary, denote by $N_{i j}(U)$ the matrix with $\frac{1}{2} U$ in the (i, j) location, $\frac{1}{2} U^{*}$ in the (j, i) location, $\frac{1}{2} I$ in the (i, i) and (j, j) locations, and 0 elsewhere, and by $J_{i j}$ the matrix with I in the (i, i) and (j, j) locations and 0 elsewhere. Then $N_{i j}(U)$ and $J_{i j}$ are evidently projections, and

$$
M_{i j}(U)=\frac{1}{2}\left[2 N_{i j}(U)-J_{i j}\right]+(i / 2)\left[2 N_{i j}(-i U)-J_{i j}\right] .
$$

Thus any matrix whose diagonal entries are linear combinations of projections is itself a linear combination of projections.

Finally, for any $A \varepsilon \mathbb{Q}$ we have $M_{11}(A)=M_{12}(A) M_{21}(I)$. Similar computations for the other diagonal entries lead to the conclusion that \mathfrak{T} is generated as an algebra by its projections. We remark that the last calculation could have been carried out using only Jordan operations, so that \mathfrak{T} is also generated as a Jordan algebra by its projections.

The next step is to observe that certain von Neumann algebras may be regarded as $n \times n$ matrix algebras over some von Neumann algebra, and consequently are generated by their projections. In fact, let \mathfrak{H} be a von Neumann algebra containing orthogonal equivalent projections $E_{1}, E_{2}, \cdots, E_{n}(n \geq 2)$ with $E_{1}+E_{2}+\cdots+E_{n}=I$. Then there exist partial isometries $U_{i} \varepsilon \mathfrak{M r}$ with $U_{j}^{*} U_{i}=E_{1}$ and $U_{i} U_{i}^{*}=E_{i}, j=1,2, \cdots, n$. It is easy to verify that the mapping $M \rightarrow\left(U_{i}^{*} M U_{i}\right)$ is a -isomorphism from \mathfrak{T} onto the $n \times n$ matrix algebra over the von Neumann algebra $E_{1} \mathfrak{M} \not E_{1}$. Therefore \mathfrak{M} is generated by its projections.

Finally, this result and the structure theory for von Neumann algebras imply the following:

Received July 1, 1966; in revised form, October 17, 1966. Research supported in part by grants from the National Science Foundation.

