OPERATOR ALGEBRAS GENERATED BY PROJECTIONS

By P. A. FILLMORE AND D. M. TOPPING

The purpose of this note is to prove that certain *-algebras of bounded linear operators on a complex Hilbert space are generated (as algebras) by their projections.

Let 3C be a Hilbert space, α a *-algebra of operators on 3C, and \mathfrak{M} the algebra of $n \times n$ matrices $(n \geq 2)$ with entries from α . Assuming that the identity operator $I \in \alpha$, and that α contains the positive square root of each of its positive operators, one can prove as follows that \mathfrak{M} is generated by its projections.

Recall first that any operator in α is a linear combination of unitary operators in α [1; 4, Proposition 3]. In fact, any operator in a *-algebra is a linear combination of self-adjoint contractions in that algebra, and if A is a self-adjoint contraction and $U = A + i(I - A^2)^{\frac{1}{2}}$, then U is unitary and $A = \frac{1}{2}(U + U^*)$.

Next we prove that any matrix $M_{ii}(A)$, with $A \in \mathfrak{A}$ in the (i, j) location and 0 elsewhere, is for $i \neq j$ a linear combination of projections. If $U \in \mathfrak{A}$ is unitary, denote by $N_{ii}(U)$ the matrix with $\frac{1}{2}U$ in the (i, j) location, $\frac{1}{2}U^*$ in the (j, i) location, $\frac{1}{2}I$ in the (i, i) and (j, j) locations, and 0 elsewhere, and by J_{ii} the matrix with I in the (i, i) and (j, j) locations and 0 elsewhere. Then $N_{ii}(U)$ and J_{ii} are evidently projections, and

$$M_{ij}(U) = \frac{1}{2} [2N_{ij}(U) - J_{ij}] + (i/2) [2N_{ij}(-iU) - J_{ij}],$$

Thus any matrix whose diagonal entries are linear combinations of projections is itself a linear combination of projections.

Finally, for any $A \in \alpha$ we have $M_{11}(A) = M_{12}(A)M_{21}(I)$. Similar computations for the other diagonal entries lead to the conclusion that \mathfrak{M} is generated as an algebra by its projections. We remark that the last calculation could have been carried out using only Jordan operations, so that \mathfrak{M} is also generated as a Jordan algebra by its projections.

The next step is to observe that certain von Neumann algebras may be regarded as $n \times n$ matrix algebras over some von Neumann algebra, and consequently are generated by their projections. In fact, let \mathfrak{M} be a von Neumann algebra containing orthogonal equivalent projections E_1 , E_2 , \cdots , $E_n(n \ge 2)$ with $E_1 + E_2 + \cdots + E_n = I$. Then there exist partial isometries $U_i \mathfrak{e} \mathfrak{M}$ with $U_i^*U_i = E_1$ and $U_iU_i^* = E_i$, $j = 1, 2, \cdots, n$. It is easy to verify that the mapping $M \to (U_i^*MU_i)$ is a *-isomorphism from \mathfrak{M} onto the $n \times n$ matrix algebra over the von Neumann algebra $E_1\mathfrak{M}E_1$. Therefore \mathfrak{M} is generated by its projections.

Finally, this result and the structure theory for von Neumann algebras imply the following:

Received July 1, 1966; in revised form, October 17, 1966. Research supported in part by grants from the National Science Foundation.